943 resultados para single operation cycle


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Nef protein of HIV-1 is important for AIDS pathogenesis, but it is not targeted by current antiviral strategies. Here, we describe a single-domain antibody (sdAb) that binds to HIV-1 Nef with a high affinity (K(d) = 2 × 10(-9)M) and inhibited critical biologic activities of Nef both in vitro and in vivo. First, it interfered with the CD4 down-regulation activity of a broad panel of nef alleles through inhibition of the Nef effects on CD4 internalization from the cell surface. Second, it was able to interfere with the association of Nef with the cellular p21-activated kinase 2 as well as with the resulting inhibitory effect of Nef on actin remodeling. Third, it counteracted the Nef-dependent enhancement of virion infectivity and inhibited the positive effect of Nef on virus replication in peripheral blood mononuclear cells. Fourth, anti-Nef sdAb rescued Nef-mediated thymic CD4(+) T-cell maturation defects and peripheral CD4(+) T-cell activation in the CD4C/HIV-1(Nef) transgenic mouse model. Because all these Nef functions have been implicated in Nef effects on pathogenesis, this anti-Nef sdAb may represent an efficient tool to elucidate the molecular functions of Nef in the virus life cycle and could now help to develop new strategies for the control of AIDS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Jing Ltd. miniature combustion aerosol standard (Mini-CAST) soot generator is a portable, commercially available burner that is widely used for laboratory measurements of soot processes. While many studies have used the Mini-CAST to generate soot with known size, concentration, and organic carbon fraction under a single or few conditions, there has been no systematic study of the burner operation over a wide range of operating conditions. Here, we present a comprehensive characterization of the microphysical, chemical, morphological, and hygroscopic properties of Mini-CAST soot over the full range of oxidation air and mixing N-2 flow rates. Very fuel-rich and fuel-lean flame conditions are found to produce organic-dominated soot with mode diameters of 10-60nm, and the highest particle number concentrations are produced under fuel-rich conditions. The lowest organic fraction and largest diameter soot (70-130nm) occur under slightly fuel-lean conditions. Moving from fuel-rich to fuel-lean conditions also increases the O:C ratio of the soot coatings from similar to 0.05 to similar to 0.25, which causes a small fraction of the particles to act as cloud condensation nuclei near the Kelvin limit (kappa similar to 0-10(-3)). Comparison of these property ranges to those reported in the literature for aircraft and diesel engine soots indicates that the Mini-CAST soot is similar to real-world primary soot particles, which lends itself to a variety of process-based soot studies. The trends in soot properties uncovered here will guide selection of burner operating conditions to achieve optimum soot properties that are most relevant to such studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the results of a unique "natural experiment" of the operation and cessation of a broadcast transmitter with its short-wave electromagnetic fields (6-22 MHz) on sleep quality and melatonin cycle in a general human population sample. In 1998, 54 volunteers (21 men, 33 women) were followed for 1 week each before and after shut-down of the short-wave radio transmitter at Schwarzenburg (Switzerland). Salivary melatonin was sampled five times a day and total daily excretion and acrophase were estimated using complex cosinor analysis. Sleep quality was recorded daily using a visual analogue scale. Before shut down, self-rated sleep quality was reduced by 3.9 units (95% CI: 1.7-6.0) per mA/m increase in magnetic field exposure. The corresponding decrease in melatonin excretion was 10% (95% CI: -32 to 20%). After shutdown, sleep quality improved by 1.7 units (95% CI: 0.1-3.4) per mA/m decrease in magnetic field exposure. Melatonin excretion increased by 15% (95% CI: -3 to 36%) compared to baseline values suggesting a rebound effect. Stratified analyses showed an exposure effect on melatonin excretion in poor sleepers (26% increase; 95% CI: 8-47%) but not in good sleepers. Change in sleep quality and melatonin excretion was related to the extent of magnetic field reduction after the transmitter's shut down in poor but not good sleepers. However, blinding of exposure was not possible in this observational study and this may have affected the outcome measurements in a direct or indirect (psychological) way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Symptomatic cervical spinal arteriovenous malformations (AVMs) located on the anterior aspect of the spinal cord are rare and surgical removal of these AVMs presents considerable challenges and risks. Surgical techniques to date have usually been by posterior approach and lateral dissection around the cord or via midline myelotomy, both approaches involving cord manipulation and retraction and in the latter, dissection through the spinal cord. We present two teenage patients with symptomatic anteriorly placed mid to high cervical spinal AVMs and associated aneurysm in which excision of the AVMs and aneurysm was performed by an anterior approach using vertebrectomy/corpectomy. The first case had a small perimedullary glomus-type AVM with an aneurysm on the anterior aspect of the cord at the C3/4 level; excision was performed using a single level vertebrectomy/corpectomy, the patient remaining neurologically intact. The second case had a medium-sized juvenile AVM with an aneurysm, both perimedullary and intramedullary, centred at the C5/6 level; excision was performed using a two-level vertebrectomy/corpectomy with no deterioration in the marked pre-operative tetraparesis, which at long-term follow up had improved and stabilised. Anterior approaches have been recently described for treatment of anteriorly placed cervical arteriovenous fistulas (AVFs) and an intramedullary haemangioblastoma, but not as yet for spinal AVMs. These are the first two reported cases of anteriorly situated cervical AVMs successfully removed surgically by an anterior approach and with good neurological outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The single electron transistor (SET) is a Coulomb blockade device, whose operation is based on the controlled manipulation of individual electrons. Single electron transistors show immense potential to be used in future ultra lowpower devices, high density memory and also in high precision electrometry. Most SET devices operate at cryogenic temperatures, because the charging energy is much smaller than the thermal oscillations. The room temperature operation of these devices is possible with sub- 10nm nano-islands due to the inverse dependance of charging energy on the radius of the conducting nano-island. The fabrication of sub-10nm features with existing lithographic techniques is a technological challenge. Here we present the results for the first room temperature operating SET device fabricated using Focused Ion Beam deposition technology. The SET device, incorporates an array of tungsten nano-islands with an average diameter of 8nm. The SET devices shows clear Coulomb blockade for different gate voltages at room temperature. The charging energy of the device was calculated to be 160.0 meV; the capacitance per junction was found to be 0.94 atto F; and the tunnel resistance per junction was calculated to be 1.26 G Ω. The tunnel resistance is five orders of magnitude larger than the quantum of resistance (26 k Ω) and allows for the localization of electrons on the tungsten nano-island. The lower capacitance of the device combined with the high tunnel resistance, allows for the Coulomb blockade effects observed at room temperature. Different device configurations, minimizing the total capacitance of the device have been explored. The effect of the geometry of the nano electrodes on the device characteristics has been presented. Simulated device characteristics, based on the soliton model have been discussed. The first application of SET device as a gas sensor has been demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The single electron transistor (SET) is a charge-based device that may complement the dominant metal-oxide-semiconductor field effect transistor (MOSFET) technology. As the cost of scaling MOSFET to smaller dimensions are rising and the the basic functionality of MOSFET is encountering numerous challenges at dimensions smaller than 10nm, the SET has shown the potential to become the next generation device which operates based on the tunneling of electrons. Since the electron transfer mechanism of a SET device is based on the non-dissipative electron tunneling effect, the power consumption of a SET device is extremely low, estimated to be on the order of 10^-18J. The objectives of this research are to demonstrate technologies that would enable the mass produce of SET devices that are operational at room temperature and to integrate these devices on top of an active complementary-MOSFET (CMOS) substrate. To achieve these goals, two fabrication techniques are considered in this work. The Focus Ion Beam (FIB) technique is used to fabricate the islands and the tunnel junctions of the SET device. A Ultra-Violet (UV) light based Nano-Imprint Lithography (NIL) call Step-and-Flash- Imprint Lithography (SFIL) is used to fabricate the interconnections of the SET devices. Combining these two techniques, a full array of SET devices are fabricated on a planar substrate. Test and characterization of the SET devices has shown consistent Coulomb blockade effect, an important single electron characteristic. To realize a room temperature operational SET device that function as a logic device to work along CMOS, it is important to know the device behavior at different temperatures. Based on the theory developed for a single island SET device, a thermal analysis is carried out on the multi-island SET device and the observation of changes in Coulomb blockade effect is presented. The results show that the multi-island SET device operation highly depends on temperature. The important parameters that determine the SET operation is the effective capacitance Ceff and tunneling resistance Rt . These two parameters lead to the tunneling rate of an electron in the SET device, Γ. To obtain an accurate model for SET operation, the effects of the deviation in dimensions, the trap states in the insulation, and the background charge effect have to be taken into consideration. The theoretical and experimental evidence for these non-ideal effects are presented in this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combustion strategy in a diesel engine has an impact on the emissions, fuel consumption and the exhaust temperatures. The PM mass retained in the CPF is a function of NO2 and PM concentrations in addition to the exhaust temperatures and the flow rates. Thus the engine combustion strategy affects exhaust characteristics which has an impact on the CPF operation and PM mass retained and oxidized. In this report, a process has been developed to simulate the relationship between engine calibration, performance and HC and PM oxidation in the DOC and CPF respectively. Fuel Rail Pressure (FRP) and Start of Injection (SOI) sweeps were carried out at five steady state engine operating conditions. This data, along with data from a previously carried out surrogate HD-FTP cycle [1], was used to create a transfer function model which estimates the engine out emissions, flow rates, temperatures for varied FRP and SOI over a transient cycle. Four different calibrations (test cases) were considered in this study, which were simulated through the transfer function model and the DOC model [1, 2]. The DOC outputs were then input into a model which simulates the NO2 assisted and thermal PM oxidation inside a CPF. Finally, results were analyzed as to how engine calibration impacts the engine fuel consumption, HC oxidation in the DOC and the PM oxidation in the CPF. Also, active regeneration for various test cases was simulated and a comparative analysis of the fuel penalties involved was carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The single-electron transistor (SET) is one of the best candidates for future nano electronic circuits because of its ultralow power consumption, small size and unique functionality. SET devices operate on the principle of Coulomb blockade, which is more prominent at dimensions of a few nano meters. Typically, the SET device consists of two capacitively coupled ultra-small tunnel junctions with a nano island between them. In order to observe the Coulomb blockade effects in a SET device the charging energy of the device has to be greater that the thermal energy. This condition limits the operation of most of the existing SET devices to cryogenic temperatures. Room temperature operation of SET devices requires sub-10nm nano-islands due to the inverse dependence of charging energy on the radius of the conducting nano-island. Fabrication of sub-10nm structures using lithography processes is still a technological challenge. In the present investigation, Focused Ion Beam based etch and deposition technology is used to fabricate single electron transistors devices operating at room temperature. The SET device incorporates an array of tungsten nano-islands with an average diameter of 8nm. The fabricated devices are characterized at room temperature and clear Coulomb blockade and Coulomb oscillations are observed. An improvement in the resolution limitation of the FIB etching process is demonstrated by optimizing the thickness of the active layer. SET devices with structural and topological variation are developed to explore their impact on the behavior of the device. The threshold voltage of the device was minimized to ~500mV by minimizing the source-drain gap of the device to 17nm. Vertical source and drain terminals are fabricated to realize single-dot based SET device. A unique process flow is developed to fabricate Si dot based SET devices for better gate controllability in the device characteristic. The device vi parameters of the fabricated devices are extracted by using a conductance model. Finally, characteristic of these devices are validated with the simulated data from theoretical modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dissipation of high heat flux from integrated circuit chips and the maintenance of acceptable junction temperatures in high powered electronics require advanced cooling technologies. One such technology is two-phase cooling in microchannels under confined flow boiling conditions. In macroscale flow boiling bubbles will nucleate on the channel walls, grow, and depart from the surface. In microscale flow boiling bubbles can fill the channel diameter before the liquid drag force has a chance to sweep them off the channel wall. As a confined bubble elongates in a microchannel, it traps thin liquid films between the heated wall and the vapor core that are subject to large temperature gradients. The thin films evaporate rapidly, sometimes faster than the incoming mass flux can replenish bulk fluid in the microchannel. When the local vapor pressure spike exceeds the inlet pressure, it forces the upstream interface to travel back into the inlet plenum and create flow boiling instabilities. Flow boiling instabilities reduce the temperature at which critical heat flux occurs and create channel dryout. Dryout causes high surface temperatures that can destroy the electronic circuits that use two-phase micro heat exchangers for cooling. Flow boiling instability is characterized by periodic oscillation of flow regimes which induce oscillations in fluid temperature, wall temperatures, pressure drop, and mass flux. When nanofluids are used in flow boiling, the nanoparticles become deposited on the heated surface and change its thermal conductivity, roughness, capillarity, wettability, and nucleation site density. It also affects heat transfer by changing bubble departure diameter, bubble departure frequency, and the evaporation of the micro and macrolayer beneath the growing bubbles. Flow boiling was investigated in this study using degassed, deionized water, and 0.001 vol% aluminum oxide nanofluids in a single rectangular brass microchannel with a hydraulic diameter of 229 µm for one inlet fluid temperature of 63°C and two constant flow rates of 0.41 ml/min and 0.82 ml/min. The power input was adjusted for two average surface temperatures of 103°C and 119°C at each flow rate. High speed images were taken periodically for water and nanofluid flow boiling after durations of 25, 75, and 125 minutes from the start of flow. The change in regime timing revealed the effect of nanoparticle suspension and deposition on the Onset of Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE). Cycle duration and bubble frequencies are reported for different nanofluid flow boiling durations. The addition of nanoparticles was found to stabilize bubble nucleation and growth and limit the recession rate of the upstream and downstream interfaces, mitigating the spreading of dry spots and elongating the thin film regions to increase thin film evaporation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristics of the traditional linear economic model are high consumption, high emission and low efficiency. Economic development is still largely at the expense of the environment and requires a natural resource investment. This can realize rapid economic development but resource depletion and environmental pollution become increasingly serious. In the 1990's a new economic model, circular economics, began to enter our vision. The circular economy maximizes production and minimizes the impact of economic activities on the ecological environment through organizing the activities through the closed-loop feedback cycle of "resources - production - renewable resource". Circular economy is a better way to solve the contradictions between the economic development and resource shortages. Developing circular economy has become the major strategic initiatives to achieving sustainable development in countries all over the world. The evaluation of the development of circular economics is a necessary step for regional circular economy development. Having a quantitative evaluation of circular economy can better monitor and reveal the contradictions and problems in the process of the development of recycling economy. This thesis will: 1) Create an evaluation model framework and new types of industries and 2) Make an evaluation of the Shanghai circular economy currently to analyze the situation of Shanghai in the development of circular economy. I will then propose suggestions about the structure and development of Shanghai circular economy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is composed of three life-cycle analysis (LCA) studies of manufacturing to determine cumulative energy demand (CED) and greenhouse gas emissions (GHG). The methods proposed could reduce the environmental impact by reducing the CED in three manufacturing processes. First, industrial symbiosis is proposed and a LCA is performed on both conventional 1 GW-scaled hydrogenated amorphous silicon (a-Si:H)-based single junction and a-Si:H/microcrystalline-Si:H tandem cell solar PV manufacturing plants and such plants coupled to silane recycling plants. Using a recycling process that results in a silane loss of only 17 versus 85 percent, this results in a CED savings of 81,700 GJ and 290,000 GJ per year for single and tandem junction plants, respectively. This recycling process reduces the cost of raw silane by 68 percent, or approximately $22.6 and $79 million per year for a single and tandem 1 GW PV production facility, respectively. The results show environmental benefits of silane recycling centered around a-Si:H-based PV manufacturing plants. Second, an open-source self-replicating rapid prototype or 3-D printer, the RepRap, has the potential to reduce the environmental impact of manufacturing of polymer-based products, using distributed manufacturing paradigm, which is further minimized by the use of PV and improvements in PV manufacturing. Using 3-D printers for manufacturing provides the ability to ultra-customize products and to change fill composition, which increases material efficiency. An LCA was performed on three polymer-based products to determine the CED and GHG from conventional large-scale production and are compared to experimental measurements on a RepRap producing identical products with ABS and PLA. The results of this LCA study indicate that the CED of manufacturing polymer products can possibly be reduced using distributed manufacturing with existing 3-D printers under 89% fill and reduced even further with a solar photovoltaic system. The results indicate that the ability of RepRaps to vary fill has the potential to diminish environmental impact on many products. Third, one additional way to improve the environmental performance of this distributed manufacturing system is to create the polymer filament feedstock for 3-D printers using post-consumer plastic bottles. An LCA was performed on the recycling of high density polyethylene (HDPE) using the RecycleBot. The results of the LCA showed that distributed recycling has a lower CED than the best-case scenario used for centralized recycling. If this process is applied to the HDPE currently recycled in the U.S., more than 100 million MJ of energy could be conserved per annum along with significant reductions in GHG. This presents a novel path to a future of distributed manufacturing suited for both the developed and developing world with reduced environmental impact. From improving manufacturing in the photovoltaic industry with the use of recycling to recycling and manufacturing plastic products within our own homes, each step reduces the impact on the environment. The three coupled projects presented here show a clear potential to reduce the environmental impact of manufacturing and other processes by implementing complimenting systems, which have environmental benefits of their own in order to achieve a compounding effect of reduced CED and GHG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed. Simulations using MITS demonstrate that the overall IV characteristics in a device with a random distribution of islands are a result of a complex interplay among those factors that affect the tunneling rates that are fixed a priori (e.g. island sizes, island separations, temperature, gate bias, etc.), and the evolving charge state of the system, which changes as the source-drain bias (VSD) is changed. With increasing VSD, a multi-island device has to overcome multiple discrete energy barriers (up-steps) before it reaches the threshold voltage (Vth). Beyond Vth, current flow is rate-limited by slow junctions, which leads to the CS structures in the IV characteristic. Each step in the CS is characterized by a unique distribution of island charges with an associated distribution of tunneling probabilities. MITS simulation studies done on one-dimensional (1D) disordered chains show that longer chains are better suited for switching applications as Vth increases with increasing chain length. They are also able to retain CS structures at higher temperatures better than shorter chains. In sufficiently disordered 2D systems, we demonstrate that there may exist a dominant conducting path (DCP) for conduction, which makes the 2D device behave as a quasi-1D device. The existence of a DCP is sensitive to the device structure, but is robust with respect to changes in temperature, gate bias, and VSD. A side gate in 1D and 2D systems can effectively control Vth. We argue that devices with smaller island sizes and narrower junctions may be better suited for practical applications, especially at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: To examine the prevalence of sustained ventricular tachycardia (VT) and sudden death (SD) in adults with atrial repair of transposition of the great arteries (TGA) and to determine associated risk factors. METHODS AND RESULTS: In a single-centre review, we studied the outcome of 149 adults (mean age 28 +/- 7 years) who had undergone a Mustard operation for TGA. During a mean follow-up of 9 +/- 6 years, sustained VT and/or SD occurred in 9% (13/149) of the cohort. Sustained VT/SD was more likely to occur in patients with associated anatomic lesions [hazard ratio (HR) 4.9, 95% CI 1.5-16.0], with NYHA class >or=III (HR 9.8, 95% CI 3.0-31.6) and with an impaired subaortic right ventricular (RV) ejection fraction (EF) (HR 2.2, 95% CI 1.2-4.0 per 10% decrease in EF). There was an inverse correlation between the RV-EF and both age and QRS duration. Patients with a QRS duration >or=140 ms were at highest risk of sustained VT/SD (HR 13.6, 95% CI 2.9-63.4). Atrial tachyarrhythmia was detected in 66 (44%) patients, but was not a statistically significant predictor of sustained VT/SD in our adult population (HR 2.7, 95% CI 0.6-13.0). CONCLUSION: Sustained VT/SD in adults after a Mustard operation for TGA are more common than previously described. Age, systemic ventricular function, and QRS duration are interrelated and are associated with VT/SD. A QRS duration >or=140 ms helps to identify the high risk patient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A strain of Saccaromyces cerevisiae (SC3B) with a temperature sensitive defect in the synthesis of DNA has been isolated. This defect is due to a single recessive mutation in a gene named INS1 required for the initiation of S phase. Arrested cells carrying the ins1$\sp{ts}$ allele are defective in the completion of G1 to S phase transition events including SPB duplication or separation, initiation of DNA synthesis, normal control of budding, and bud neck stability. The mutation and a gene which complements the mutation were mapped to chromosome IV. The complementing gene was proved to be the wild type allele of the temperature sensitive mutation by genetic linkage of an integrated clone. A very low abundance 4.2 kb RNA message was observed in the strain SC3B which increased greatly in this strain transformed with a multiple copy plasmid carrying the complementing clone. The wild type gene was sequenced and found to encode a 1268 amino acid protein of with a molecular weight of 142,655 Daltons. Computer assisted searches for similar DNA sequences revealed no significant homology matches. However, searches for protein sequence homology revealed a protein (the DIS3 gene product of S. pombe) with a similar sequence over a 534 amino acid stretch to the predicted INS1 gene product. A later search revealed a near identical sequence for a gene (SRK1) also isolated from S. cerevisiae. ^