860 resultados para serine lipidic metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent discovery of lipid-activatable transcription factors that regulate the genes controlling lipid metabolism and adipogenesis has provided insight into the way that organisms sense and respond to lipid levels. Identification of the signaling pathways in which these receptors are involved will help us to understand the control of energy balance and the molecular defects underlying its disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aging is a multidimensional process of physical, psychological, and social changes. Understanding how we sleep and how this dynamic process evolves across life span will help to identify normal developmental aspects of sleep over time and to create strategies to increase awareness of sleep disturbances and their early management. In normal sleepers from HypnoLaus cohort, we evaluated the effects of age and gender on both subjective and objective sleep measurements. Our results indicate that normal aging is not accompanied by sleep complaints, and when they exist suggest the presence of underlying comorbidities. Polysomnographic data revealed that slow wave sleep was more affected with age in men, and age affected differently NREM and REM spectral power densities. Both sleep structure and spectral analysis profiles may constitute standards to delineate pathological changes in sleep, both for aging women and men. Another important aspect in the management of sleep and its disorders is a detailed characterization of sleep-inducing medications. Gamma-hydroxybutyrate (GHB) is an inhibitory neurotransmitter derivative of GABA, but its mode of action and the range of effects are not well understood. Several properties, as growth hormone stimulation in humans and the development of weight loss in treated patients suggest an unexplored metabolic effect. In different experiments we assessed the effects of acute, short term and chronic GHB administration on central (cerebral cortex) and peripheral (liver) biochemical processes involved in the metabolism of the drug, as well as the effects of the drug on metabolism in C57BL/6J, GABAB knock-out and obese (ob/ob) mice. We showed that GHB treatment affects weight gain in C57BL/6J and GABAB knock-out mice. Metabolomic analysis indicated large central and peripheral metabolic changes induced by GHB with important relevance to its therapeutic use. -- Le vieillissement est un processus multidimensionnel accompagné par de multiples changements dans les domaines physique, psychologique et social. Comprendre comment nous dormons et comment ce processus dynamique évolue sur la durée de vie nous aidera à identifier les aspects normaux du développement du sommeil au fil du temps, et à créer des stratégies pour accroître la connaissance et compréhension des troubles du sommeil et leur prise en charge précoce. Chez les sujets normaux de la cohorte HypnoLaus nous avons évalué les effets de l'âge et du sexe sur les mesures subjectives et objectives du sommeil. Nos résultats indiquent que le vieillissement normal ne s'accompagne pas de troubles du sommeil, et quand ils existent ceux-ci suggèrent la présence de comorbidités sous-jacentes. Les données polysomnographiques ont révélé que le sommeil profond était plus affecté avec l'âge chez les hommes. De plus, nous avons montré comment l'âge modifie la composition spectrale du sommeil lent et paradoxal. La structure du sommeil et les profils d'analyse spectrale peuvent donc constituer des standards permettant de définir les changements pathologiques du sommeil chez les personnes âgées. Parmi les aspects importants de la gestion du sommeil et de ses troubles, la caractérisation détaillée des médicaments hypnotiques utilisés est essentielle. L'acide gamma-hydroxybutyrique (GHB) est un acide gras à courte chaîne dérivé du GABA, principal neurotransmetteur inhibiteur du cerveau, mais son mode d'action et tous ses effets sont toujours largement méconnus. Plusieurs propriétés, comme la stimulation de la sécrétion de l'hormone de croissance chez l'homme et le développement d'une perte de poids chez les patients traités suggèrent un effet métabolique inexploré. Dans différentes expériences, nous avons évalué les effets d'une exposition aiguë, à court terme et chronique de GHB sur les processus biochimiques centraux (cortex cérébral) et périphériques (foie) impliqués dans le métabolisme du médicament. Nous avons aussi évalué les effets du médicament sur le métabolisme des souris C57BL/6J, GABAB KO et obèses (ob/ob). Nos résultats ont montré que le GHB diminue le gain de poids chez les souris C57BL/6J et GABAB KO. L'analyse métabolomique a indiqué des changements importants induits par GHB au niveau central et périphérique, et ces effets sont importants pour son utilisation thérapeutique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuron-astrocyte reciprocal communication at synapses has emerged as a novel signalling pathway in brain function. Astrocytes sense the level of synaptic activity and, in turn, influence its efficacy through the regulated release of 'gliotransmitters' such as glutamate, ATP or D-serine. A calcium-dependent exocytosis is proposed to drive the release of gliotransmitters but its existence is still debated. Over the last years, we have been studying the molecular determinants governing D-serine release from glia using different approaches. Using a novel bioassay for D-serine, we have been able to show that D-serine release occurs mainly through a calcium- and SNARE proteindependent mechanism just supporting the idea that this amino acid is released by exocytosis from glia. We next have pursued our exploration by confocal imaging and tracking of the exocytotic routes for Dserine- mediated gliotransmission and have shown that D-serine releasable pools are confined to synaptobrevin2/cellubrevin-bearing vesicles. To shed light onto the mechanisms controlling the storage and the release of gliotransmitters and namely D-serine, we have developed a new method for the immunoisolation of synaptobrevin 2- positive vesicles from rat cortical astrocytes in culture while preserving their content in gliotransmitters. The purified organelles are clear round shape vesicles of excellent purity with homogeneous size (40 nm) as judged by electron microscopy. Immunoblotting analysis revealed that isolated vesicles contain most of the major proteins already described for neuron-derived vesicles like synaptic vesicle protein 2 (SV2) and the proton pump H?-ATPase. In addition, we have analyzed the content for various amino acids of these vesicles by means of chiral capillary electrophoresis coupled to laser-induced fluorescence detection. The purified vesicles contain large amount of D-serine. We also detect peaks corresponding to unidentified compounds that may correspond to others amino acids. Postembedding immunogold labelling of the rat neocortex further revealed the expression of D-serine in astrocytes processes contacting excitatory synapses. Finally, we have examined the uptake properties for Dserine and glutamate inside the isolated glial vesicles. Our results provide significant support for the existence of an uptake system for D-serine in secretory glial vesicles and for the storage of chemical substances like D-serine and glutamate. 11th International Congress on Amino Acids, Peptides and Proteins 763 123

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PPARs are nuclear hormone receptors which, like the retinoid, thyroid hormone, vitamin D, and steroid hormone receptors, are ligand-activated transcription factors mediating the hormonal control of gene expression. Two lines of evidence indicate that PPARs have an important function in fatty acid metabolism. First, PPARs are activated by hypolipidemic drugs and physiological concentrations of fatty acids, and second, PPARs control the peroxisomal beta-oxidation pathway of fatty acids through transcriptional induction of the gene encoding the acyl-CoA oxidase (ACO), which is the rate-limiting enzyme of the pathway. Furthermore, the PPAR signaling pathway appears to converge with the 9-cis retinoic acid receptor (RXR) signaling pathway in the regulation of the ACO gene because heterodimerization between PPAR and RXR is essential for in vitro binding to the PPRE and because the strongest stimulation of this gene is observed when both receptors are exposed simultaneously to their activators. Thus, it appears that PPARs are involved in the 9-cis retinoic acid signaling pathway and that they play a pivotal role in the hormonal control of lipid metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many Gram-negative bacteria, the GacS/GacA two-component system positively controls the expression of extracellular products or storage compounds. In the plant-beneficial rhizosphere bacterium Pseudomonas fluorescens CHA0, the GacS/GacA system is essential for the production of antibiotic compounds and hence for biological control of root-pathogenic fungi. The small (119-nt) RNA RsmX discovered in this study, together with RsmY and RsmZ, forms a triad of GacA-dependent small RNAs, which sequester the RNA-binding proteins RsmA and RsmE and thereby antagonize translational repression exerted by these proteins in strain CHA0. This small RNA triad was found to be both necessary and sufficient for posttranscriptional derepression of biocontrol factors and for protection of cucumber from Pythium ultimum. The same three small RNAs also positively regulated swarming motility and the synthesis of a quorum-sensing signal, which is unrelated to N-acyl-homoserine lactones, and which autoinduces the Gac/Rsm cascade. Expression of RsmX and RsmY increased in parallel throughout cell growth, whereas RsmZ was produced during the late growth phase. This differential expression is assumed to facilitate fine tuning of GacS/A-controlled cell population density-dependent regulation in P. fluorescens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Posterior microphthalmos (MCOP)/nanophthalmos (NNO) is a developmental anomaly characterized by extreme hyperopia due to short axial length. The population of the Faroe Islands shows a high prevalence of an autosomal recessive form (arMCOP). The gene mutated in arMCOP is not yet known.Methods: Genetic mapping by linkage analysis using microsatellite and single nucleotide polymorphisms, mutation analysis by PCR and sequencing, molecular modellingResults: Having refined the position of the disease locus (MCOP6) in an interval of 250 kb in chromosome 2q37.1 in Faroese families, we detected 3 mutations in a novel gene, LOC646960: Patients of 10 different Faroese families were either homozygous (n=22) for c.926G>C (p.Trp309Ser) or compound heterozygous (n=6) for c.926G>C and c.526C>G (p.Arg176Gly), whereas a homozygous 1 bp duplication (c.1066dupC) was identified in patients with arNNO from a Tunisian family. In two unrelated patients with MCOP, no LOC646960 mutation was found. LOC646960 is expressed in the human adult retina and RPE. The expression of the mouse homologue in the eye can be first detected at E17 and is highest in adults. The predicted protein is a 603 amino acid long secreted trypsin-like serine peptidase. c.1066dupC should result in a functional null allele. Molecular modelling of the p.Trp309Ser mutant suggests that both affinity and reactivity of the enzyme towards in vivo substrates are substantially reduced.Conclusions: Postnatal growth of the eye is important for proper development of the refractive components (emmetropization), and is mainly due to elongation of the posterior segment from 10-11 mm at birth to 15-16 mm at the age of 13 years. Optical defocus leads to changes in axial length by moving the retina towards the image plane. arMCOP may theoretically be explained, in line with the expression pattern of LOC646960, by a postnatal growth retardation of the posterior segment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. The neurogenic niche regulates the stem cell proliferation and the differentiation and survival of new neurons and a major contributor to the neurogenic niche are astrocytes. Among the molecules secreted by astrocytes, D-serine is an important gliotransmitter and is a co-agonist of the glutamate, N-methyl-D-aspartate (NMDA) receptor. D-serine has been shown to enhance the proliferation of neural stem cells in vitro, but its effect on adult neurogenesis in vivo is unknown. Here, we tested the effect of exogenous administration of D-serine on adult neurogenesis in the mouse dentate gyrus. We found that 1 week of treatment with D-serine increased cell proliferation in vivo and in vitro and increased the density of neural stem cells and transit amplifying progenitors. Furthermore, D-serine increased the survival of newborn neurons. Together, these results indicate that D-serine treatment resulted in the improvement of several steps of adult neurogenesis in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desmosomes are intercellular adhesive complexes that anchor the intermediate filament cytoskeleton to the cell membrane in epithelia and cardiac muscle cells. The desmosomal component desmoplakin plays a key role in tethering various intermediate filament networks through its C-terminal plakin repeat domain. To gain better insight into the cytoskeletal organization of cardiomyocytes, we investigated the association of desmoplakin with desmin by cell transfection, yeast two-hybrid, and/or in vitro binding assays. The results indicate that the association of desmoplakin with desmin depends on sequences within the linker region and C-terminal extremity of desmoplakin, where the B and C subdomains contribute to efficient binding; a potentially phosphorylatable serine residue in the C-terminal extremity of desmoplakin affects its association with desmin; the interaction of desmoplakin with non-filamentous desmin requires sequences contained within the desmin C-terminal rod portion and tail domain in yeast, whereas in in vitro binding studies the desmin tail is dispensable for association; and mutations in either the C-terminus of desmoplakin or the desmin tail linked to inherited cardiomyopathy seem to impair desmoplakindesmin interaction. These studies increase our understanding of desmoplakin-intermediate filament interactions, which are important for maintenance of cytoarchitecture in cardiomyocytes, and give new insights into the molecular basis of desmoplakin- and desmin-related human diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low malathion concentrations influence metabolism in Chironomus sancticaroli (Diptera, Chironomidae) in acute and chronic toxicity tests. Organophosphate compounds are used in agro-systems, and in programs to control pathogen vectors. Because they are continuously applied, organophosphates often reach water sources and may have an impact on aquatic life. The effects of acute and chronic exposure to the organophosphate insecticide malathion on the midge Chironomus sancticaroli are evaluated. To that end, three biochemical biomarkers, acetylcholinesterase (AChE), alpha (EST-α) and beta (EST-β) esterase were used. Acute bioassays with five concentrations of malathion, and chronic bioassays with two concentrations of malathion were carried out. In the acute exposure test, AChE, EST-α and EST-β activities declined by 66, 40 and 37%, respectively, at 0.251 µg L-1 and more than 80% at 1.37, 1.96 and 2.51 µg L-1. In chronic exposure tests, AChE and EST-α activities declined by 28 and 15% at 0.251 µg L-1. Results of the present study show that low concentrations of malathion can influence larval metabolism, indicating high toxicity for Chironomus sancticaroli and environmental risk associated with the use of organophosphates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a comparison of the changes in the energetic metabolic pattern of China and India, the two most populated countries in the world, with two economies undergoing an important economic transition. The comparison of the changes in the energetic metabolic pattern has the scope to characterize and explain a bifurcation in their evolutionary path in the recent years, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) approach. The analysis shows an impressive transformation of Chinaâs energy metabolism determined by the joining of the WTO in 2001. Since then, China became the largest factory of the world with a generalized capitalization of all sectors âespecially the industrial sectorâ boosting economic labor productivity as well as total energy consumption. India, on the contrary, lags behind when considering these factors. Looking at changes in the household sector (energy metabolism associated with final consumption) in the case of China, the energetic metabolic rate (EMR) soared in the last decade, also thanks to a reduced growth of population, whereas in India it remained stagnant for the last 40 years. This analysis indicates a big challenge for India for the next decade. In the light of the data analyzed both countries will continue to require strong injections of technical capital requiring a continuous increase in their total energy consumption. When considering the size of these economies it is easy to guess that this may induce a dramatic increase in the price of energy, an event that at the moment will penalize much more the chance of a quick economic development of India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptosis, differentiation, and proliferation are cellular responses which play a pivotal role in wound healing. During this process PPARbeta translates inflammatory signals into prompt keratinocyte responses. We show herein that PPARbeta modulates Akt1 activation via transcriptional upregulation of ILK and PDK1, revealing a mechanism for the control of Akt1 signaling. The resulting higher Akt1 activity leads to increased keratinocyte survival following growth factor deprivation or anoikis. PPARbeta also potentiates NF-kappaB activity and MMP-9 production, which can regulate keratinocyte migration. Together, these results provide a molecular mechanism by which PPARbeta protects keratinocytes against apoptosis and may contribute to the process of skin wound closure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: The optimal hemoglobin (Hgb) target after aneurysmal subarachnoid hemorrhage is not precisely known. We sought to examine the threshold of Hgb concentration associated with an increased risk of cerebral metabolic dysfunction in patients with poor-grade subarachnoid hemorrhage. METHODS: Twenty consecutive patients with poor-grade subarachnoid hemorrhage who underwent multimodality neuromonitoring (intracranial pressure, brain tissue oxygen tension, cerebral microdialysis) were studied prospectively. Brain tissue oxygen tension and extracellular lactate/pyruvate ratio were used as markers of cerebral metabolic dysfunction and the relationship between Hgb concentrations and the incidence of brain hypoxia (defined by a brain tissue oxygen tension <20 mm Hg) and cell energy dysfunction (defined by a lactate/pyruvate ratio >40) was analyzed. RESULTS: Compared with higher Hgb concentrations, a Hgb concentration <9 g/dL was associated with lower brain tissue oxygen tension (27.2 [interquartile range, 21.2 to 33.1] versus 19.9 [interquartile range, 7.1 to 33.1] mm Hg, P=0.02), higher lactate/pyruvate ratio (29 [interquartile range, 25 to 38] versus 36 [interquartile range, 26 to 59], P=0.16), and an increased incidence of brain hypoxia (21% versus 52%, P<0.01) and cell energy dysfunction (23% versus 43%, P=0.03). On multivariable analysis, a Hgb concentration <9 g/dL was associated with a higher risk of brain hypoxia (OR, 7.92; 95% CI, 2.32 to 27.09; P<0.01) and cell energy dysfunction (OR, 4.24; 95% CI, 1.33 to 13.55; P=0.02) after adjusting for cerebral perfusion pressure, central venous pressure, PaO(2)/FIO(2) ratio, and symptomatic vasospasm. CONCLUSIONS: A Hgb concentration <9 g/dL is associated with an increased incidence of brain hypoxia and cell energy dysfunction in patients with poor-grade subarachnoid hemorrhage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis We assessed systemic and local muscle fuel metabolism during aerobic exercise in patients with type I diabetes at euglycaemia and hyperglycaemia with identical insulin levels.Methods This was a single-blinded randomised crossover study at a university diabetes unit in Switzerland. We studied seven physically active men with type I diabetes (mean +/- SEM age 33.5 +/- 2.4 years, diabetes duration 20.1 +/- 3.6 years, HbA(1c) 6.7 +/- 0.2% and peak oxygen uptake [VO2peak] 50.3 +/- 4.5 ml min(-1) kg(-1)). Men were studied twice while cycling for 120 min at 55 to 60% of VO2peak, with a blood glucose level randomly set either at 5 or 11 mmol/l and identical insulinaemia. The participants were blinded to the glycaemic level; allocation concealment was by opaque, sealed envelopes. Magnetic resonance spectroscopy was used to quantify intramyocellular glycogen and lipids before and after exercise. Indirect calorimetry and measurement of stable isotopes and counter-regulatory hormones complemented the assessment of local and systemic fuel metabolism.Results The contribution of lipid oxidation to overall energy metabolism was higher in euglycaemia than in hyperglycaemia (49.4 +/- 4.8 vs 30.6 +/- 4.2%; p<0.05). Carbohydrate oxidation accounted for 48.2 +/- 4.7 and 66.6 +/- 4.2% of total energy expenditure in euglycaemia and hyperglycaemia, respectively (p<0.05). The level of intramyocellular glycogen before exercise was higher in hyperglycaemia than in euglycaemia (3.4 +/- 0.3 vs 2.7 +/- 0.2 arbitrary units [AU]; p<0.05). Absolute glycogen consumption tended to be higher in hyperglycaemia than in euglycaemia (1.3 +/- 0.3 vs 0.9 +/- 0.1 AU). Cortisol and growth hormone increased more strongly in euglycaemia than in hyperglycaemia (levels at the end of exercise 634 52 vs 501 +/- 32 nmol/l and 15.5 +/- 4.5 vs 7.4 +/- 2.0 ng/ml, respectively; p<0.05).Conclusions/interpretation Substrate oxidation in type I diabetic patients performing aerobic exercise in euglycaemia is similar to that in healthy individuals revealing a shift towards lipid oxidation during exercise. In hyperglycaemia fuel metabolism in these patients is dominated by carbohydrate oxidation. Intramyocellular glycogen was not spared in hyperglycaemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular mechanisms regulating the initial uptake of inorganic sulfate in plants are still largely unknown. The current model for the regulation of sulfate uptake and assimilation attributes positive and negative regulatory roles to O-acetyl-serine (O-acetyl-Ser) and glutathione, respectively. This model seems to suffer from exceptions and it has not yet been clearly validated whether intracellular O-acetyl-Ser and glutathione levels have impacts on regulation. The transcript level of the two high-affinity sulfate transporters SULTR1.1 and SULTR1.2 responsible for sulfate uptake from the soil solution was compared to the intracellular contents of O-acetyl-Ser, glutathione, and sulfate in roots of plants submitted to a wide diversity of experimental conditions. SULTR1.1 and SULTR1.2 were differentially expressed and neither of the genes was regulated in accordance with the current model. The SULTR1.1 transcript level was mainly altered in response to the sulfur-related treatments. Split-root experiments show that the expression of SULTR1.1 is locally regulated in response to sulfate starvation. In contrast, accumulation of SULTR1.2 transcripts appeared to be mainly related to metabolic demand and is controlled by photoperiod. On the basis of the new molecular insights provided in this study, we suggest that the expression of the two transporters depends on different regulatory networks. We hypothesize that interplay between SULTR1.1 and SULTR1.2 transporters could be an important mechanism to regulate sulfate content in the roots