916 resultados para sensor-Cloud system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A parametrization for ice supersaturation is introduced into the ECMWF Integrated Forecast System (IFS), compatible with the cloud scheme that allows partial cloud coverage. It is based on the simple, but often justifiable, diagnostic assumption that the ice nucleation and subsequent depositional growth time-scales are short compared to the model time step, thus supersaturation is only permitted in the clear-sky portion of the grid cell. Results from model integrations using the new scheme are presented, which is demonstrated to increase upper-tropospheric humidity, decrease high-level cloud cover and, to a much lesser extent, cloud ice amounts, all as expected from simple arguments. Evaluation of the relative distribution of supersaturated humidity amounts shows good agreement with the observed climatology derived from in situ aircraft observations. With the new scheme, the global distribution of frequency of occurrence of supersaturated regions compares well with remotely sensed microwave limb sounder (MLS) data, with the most marked errors of underprediction occurring in regions where the model is known to underpredict deep convection. Finally, it is also demonstrated that the new scheme leads to improved predictions of permanent contrail cloud over southern England, which indirectly implies upper-tropospheric humidity fields are better represented for this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite observations of convective system properties and lightning flash rate are used to investigate the ability of potential lightning parameterizations to capture both the dominant land-ocean contrast in lightning occurrence and regional differences between Africa, the Amazon and the islands of the maritime continent. As found in previous studies, the radar storm height is tightly correlated with the lightning flash rate. A roughly second order power-law fit to the mean radar echo top height above the 0C isotherm is shown to capture both regional and land-ocean contrasts in lightning occurrence and flash rate using a single set of parameters. Recent developments should soon make it possible to implement a parameterization of this kind in global models. Parameterizations based on cloud top height, convective rain rate and convective rain fraction all require the use of separate fits over land and ocean and fail to capture observed differences between continental regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed an ensemble of twelve five-year experiments using a coupled climate-carbon-cycle model with scenarios of prescribed atmospheric carbon dioxide concentration; CO2 was instantaneously doubled or quadrupled at the start of the experiments. Within these five years, climate feedback is not significantly influenced by the effects of climate change on the carbon system. However, rapid changes take place, within much less than a year, due to the physiological effect of CO2 on plant stomatal conductance, leading to adjustment in the shortwave cloud radiative effect over land, due to a reduction in low cloud cover. This causes a 10% enhancement to the radiative forcing due to CO2, which leads to an increase in the equilibrium warming of 0.4 and 0.7 K for doubling and quadrupling. The implications for calibration of energy-balance models are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An eddy current testing system consists of a multi-sensor probe, a computer and a special expansion card and software for data-collection and analysis. The probe incorporates an excitation coil, and sensor coils; at least one sensor coil is a lateral current-normal coil and at least one is a current perturbation coil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The DcuS-DcuR system of Escherichia coli is a two-component sensor-regulator that controls gene expression in response to external C-4-dicarboxylates and citrate. The DcuS protein is particularly interesting since it contains two PAS domains, namely a periplasmic C-4-dicarboxylate-sensing PAS domain (PASp) and a cytosolic PAS domain (PASc) of uncertain function. For a study of the role of the PASc domain, three different fragments of DcuS were overproduced and examined: they were PASc-kinase, PASc, and kinase. The two kinase-domain-containing fragments were autophosphorylated by [gamma-P-32]ATP. The rate was not affected by fumarate or succinate, supporting the role of the PASp domain in C-4-dicarboxylate sensing. Both of the phosphorylated DcuS constructs were able to rapidly pass their phosphoryl groups to DcuR, and after phosphorylation, DcuR dephosphorylated rapidly. No prosthetic group or significant quantity of metal was found associated with either of the PASc-containing proteins. The DNA-binding specificity of DcuR was studied by use of the pure protein. It was found to be converted from a monomer to a dimer upon acetylphosphate treatment, and native polyacrylamide gel electrophoresis suggested that it can oligomerize. DcuR specifically bound to the promoters of the three known DcuSR-regulated genes (dctA, dcuB, and frdA), with apparent K(D)s of 6 to 32 muM for untreated DcuR and less than or equal to1 to 2 muM for the acetylphosphate-treated form. The binding sites were located by DNase I footprinting, allowing a putative DcuR-binding motif [tandemly repeated (T/A)(A/T)(T/C)(A/T)AA sequences] to be identified. The DcuR-binding sites of the dcuB, dctA, and frdA genes were located 27, 94, and 86 bp, respectively, upstream of the corresponding +1 sites, and a new promoter was identified for dcuB that responds to DcuR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phase separation behaviour in aqueous mixtures of poly(methyl vinyl ether) and hydroxypropylcellulose has been studied by cloud points method and viscometric measurements. The miscibility of these blends in solid state has been assessed by infrared spectroscopy; methanol vapours sorption experiments and scanning electron microscopy. The values of Gibbs energy of mixing of the polymers and their blends with methanol as well as between each other were calculated. It was found that in solid state the polymers can interact with methanol very well but the polymer-polymer interactions are unfavourable. Although in aqueous solutions the polymers exhibit some intermolecular interactions their solid blends are not completely miscible. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under the framework of the European Union Funded SAFEE project(1), this paper gives an overview of a novel monitoring and scene analysis system developed for use onboard aircraft in spatially constrained environments. The techniques discussed herein aim to warn on-board crew about pre-determined indicators of threat intent (such as running or shouting in the cabin), as elicited from industry and security experts. The subject matter experts believe that activities such as these are strong indicators of the beginnings of undesirable chains of events or scenarios, which should not be allowed to develop aboard aircraft. This project aimes to detect these scenarios and provide advice to the crew. These events may involve unruly passengers or be indicative of the precursors to terrorist threats. With a state of the art tracking system using homography intersections of motion images, and probability based Petri nets for scene understanding, the SAFEE behavioural analysis system automatically assesses the output from multiple intelligent sensors, and creates. recommendations that are presented to the crew using an integrated airborn user interface. Evaluation of the system is conducted within a full size aircraft mockup, and experimental results are presented, showing that the SAFEE system is well suited to monitoring people in confined environments, and that meaningful and instructive output regarding human actions can be derived from the sensor network within the cabin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a vital factor affecting system cost and lifetime, energy consumption in wireless sensor networks (WSNs) has been paid much attention to. This article presents a new approach to making use of electromagnetic energy from useless radio frequency (RF) signals transmitted in WSNs, with a quantitative analysis showing its feasibility. A mechanism to harvest the energy either passively or actively is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cloud-air transition zone at stratiform cloud edges is an electrically active region where droplet charging has been predicted. Cloud edge droplet charging is expected from vertical flow of cosmic ray generated atmospheric ions in the global electric circuit. Experimental confirmation of stratiform cloud edge electrification is presented here, through charge and droplet measurements made within an extensive layer of supercooled stratiform cloud, using a specially designed electrostatic sensor. Negative space charge up to 35 pC m−3 was found in a thin (<100 m) layer at the lower cloud boundary associated with the clear air-cloud conductivity gradient, agreeing closely with space charge predicted from the measured droplet concentration using ion-aerosol theory. Such charge levels carried by droplets are sufficient to influence collision processes between cloud droplets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud radar and lidar can be used to evaluate the skill of numerical weather prediction models in forecasting the timing and placement of clouds, but care must be taken in choosing the appropriate metric of skill to use due to the non- Gaussian nature of cloud-fraction distributions. We compare the properties of a number of different verification measures and conclude that of existing measures the Log of Odds Ratio is the most suitable for cloud fraction. We also propose a new measure, the Symmetric Extreme Dependency Score, which has very attractive properties, being equitable (for large samples), difficult to hedge and independent of the frequency of occurrence of the quantity being verified. We then use data from five European ground-based sites and seven forecast models, processed using the ‘Cloudnet’ analysis system, to investigate the dependence of forecast skill on cloud fraction threshold (for binary skill scores), height, horizontal scale and (for the Met Office and German Weather Service models) forecast lead time. The models are found to be least skillful at predicting the timing and placement of boundary-layer clouds and most skilful at predicting mid-level clouds, although in the latter case they tend to underestimate mean cloud fraction when cloud is present. It is found that skill decreases approximately inverse-exponentially with forecast lead time, enabling a forecast ‘half-life’ to be estimated. When considering the skill of instantaneous model snapshots, we find typical values ranging between 2.5 and 4.5 days. Copyright c 2009 Royal Meteorological Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virulence in Staphylococcus aureus is regulated via agr-dependent quorum sensing in which an autoinducing peptide (AIP) activates AgrC, a histidine protein kinase. AIPs are usually thiolactones containing seven to nine amino acid residues in which the thiol of the central cysteine is linked to the alpha-carboxyl of the C-terminal amino acid residue. The staphylococcal agr locus has diverged such that the AIPs of the four different S. aureus agr groups self-activate but cross-inhibit. Consequently, although the agr system is conserved among the staphylococci, it has undergone significant evolutionary divergence whereby to retain functionality, any changes in the AIP-encoding gene (agrD) that modifies AIP structure must be accompanied by corresponding changes in the AgrC receptor. Since AIP-1 and AIP-4 only differ by a single amino acid, we compared the transmembrane topology of AgrC1 and AgrC4 to identify amino acid residues involved in AIP recognition. As only two of the three predicted extracellular loops exhibited amino acid differences, site-specific mutagenesis was used to exchange the key AgrC1 and AgrC4 amino acid residues in each loop either singly or in combination. A novel lux-based agrP3 reporter gene fusion was constructed to evaluate the response of the mutated AgrC receptors. The data obtained revealed that while differential recognition of AIP-1 and AIP-4 depends primarily on three amino acid residues in loop 2, loop 1 is essential for receptor activation by the cognate AIP. Furthermore, a single mutation in the AgrC1 loop 2 resulted in conversion of (Ala5)AIP-1 from a potent antagonist to an activator, essentially resulting in the forced evolution of a new AIP group. Taken together, our data indicate that loop 2 constitutes the predicted hydrophobic pocket that binds the AIP thiolactone ring while the exocyclic amino acid tail interacts with loop 1 to facilitate receptor activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lightning data, collected using a Boltek Storm Tracker system installed at Chilton, UK, were used to investigate the mean response of the ionospheric sporadic-E layer to lightning strokes in a superposed epoch study. The lightning detector can discriminate between positive and negative lightning strokes and between cloud-to-ground ( CG) and inter-cloud ( IC) lightning. Superposed epoch studies carried out separately using these subsets of lightning strokes as trigger events have revealed that the dominant cause of the observed ionospheric enhancement in the Es layer is negative cloud-to-ground lightning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite measurements and numerical forecast model reanalysis data are used to compute an updated estimate of the cloud radiative effect on the global multi-annual mean radiative energy budget of the atmosphere and surface. The cloud radiative cooling effect through reflection of shortwave radiation dominates over the longwave heating effect, resulting in a net cooling of the climate system of –21 Wm-2. The shortwave radiative effect of cloud is primarily manifest as a reduction in the solar radiation absorbed at the surface of -53 Wm-2. Clouds impact longwave radiation by heating the moist tropical atmosphere (up to around 40 Wm-2 for global annual means) while enhancing the radiative cooling of the atmosphere over other regions, in particular higher latitudes and sub-tropical marine stratocumulus regimes. While clouds act to cool the climate system during the daytime, the cloud greenhouse effect heats the climate system at night. The influence of cloud radiative effect on determining cloud feedbacks and changes in the water cycle are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and effective algorithm is introduced for the system identification of Wiener system based on the observational input/output data. The B-spline neural network is used to approximate the nonlinear static function in the Wiener system. We incorporate the Gauss-Newton algorithm with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialization scheme. The efficacy of the proposed approach is demonstrated using an illustrative example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CloudSat is a satellite experiment designed to measure the vertical structure of clouds from space. The expected launch of CloudSat is planned for 2004, and once launched, CloudSat will orbit in formation as part of a constellation of satellites (the A-Train) that includes NASA's Aqua and Aura satellites, a NASA-CNES lidar satellite (CALIPSO), and a CNES satellite carrying a polarimeter (PARASOL). A unique feature that CloudSat brings to this constellation is the ability to fly a precise orbit enabling the fields of view of the CloudSat radar to be overlapped with the CALIPSO lidar footprint and the other measurements of the constellation. The precision and near simultaneity of this overlap creates a unique multisatellite observing system for studying the atmospheric processes essential to the hydrological cycle.The vertical profiles of cloud properties provided by CloudSat on the global scale fill a critical gap in the investigation of feedback mechanisms linking clouds to climate. Measuring these profiles requires a combination of active and passive instruments, and this will be achieved by combining the radar data of CloudSat with data from other active and passive sensors of the constellation. This paper describes the underpinning science and general overview of the mission, provides some idea of the expected products and anticipated application of these products, and the potential capability of the A-Train for cloud observations. Notably, the CloudSat mission is expected to stimulate new areas of research on clouds. The mission also provides an important opportunity to demonstrate active sensor technology for future scientific and tactical applications. The CloudSat mission is a partnership between NASA's JPL, the Canadian Space Agency, Colorado State University, the U.S. Air Force, and the U.S. Department of Energy.