890 resultados para seasonal preference
Resumo:
In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
Ovaries were collected over a period of two years from heifers slaughtered at under 30 months of age and used to harvest 1757 oocytes. After in vitro maturation, fertilisation and culture, the proportions of oocytes and cleaved embryos that developed to blastocysts were significantly higher (P < 0.01) in the autumn, from September to November, than in the spring, from March to May. In contrast, embryo development, as assessed by oocytes that developed to eight or more cells and blastocysts, was lowest (P < 0.01) in the spring. These results were consistent during the two-year study, indicating a seasonal fluctuation in oocyte competence.
Resumo:
Background: The impact of global climate change on plant distribution, speciation and extinction is of current concern. Examining species climatic preferences via bioclimatic niche modelling is a key tool to study this impact. There is an established link between bioclimatic niche models and phylogenetic diversification. A next step is to examine future distribution predictions from a phylogenetic perspective. We present such a study using Cyclamen (Myrsinaceae), a group which demonstrates morphological and phenological adaptations to its seasonal Mediterranean-type climate. How will the predicted climate change affect future distribution of this popular genus of garden plants? Results: We demonstrate phylogenetic structure for some climatic characteristics, and show that most Cyclamen have distinct climatic niches, with the exception of several wide-ranging, geographically expansive, species. We reconstruct climate preferences for hypothetical ancestral Cyclamen. The ancestral Cyclamen lineage has a preference for the seasonal Mediterranean climate characteristic of dry summers and wet winters. Future bioclimatic niches, based on BIOCLIM and Maxent models, are examined with reference to a future climate scenario for the 2050s. Over the next 50 years we predict a northward shift in the area of climatic suitability, with many areas of current distribution becoming climatically unsuitable. The area of climatic suitability for every Cyclamen species is predicted to decrease. For many species, there may be no areas with a suitable climate regardless of dispersal ability, these species are considered to be at high risk of extinction. This risk is examined from a phylogenetic perspective. Conclusion: Examining bioclimatic niches from a phylogenetic perspective permits novel interpretations of these models. In particular, reconstruction of ancestral niches can provide testable hypothesis about the historical development of lineages. In the future we can expect a northwards shift in climatic suitability for the genus Cyclamen. If this proves to be the case then dispersal is the best chance of survival, which seems highly unlikely for ant-dispersed Cyclamen. Human-assisted establishment of Cyclamen species well outside their native ranges offers hope and could provide the only means of dispersal to potentially suitable future environments. Even without human intervention the phylogenetic perspective demonstrates that major lineages could survive climate change even if many species are lost.
Resumo:
Fragaria vesca is a short-lived perennial with a seasonal-flowering habit. Seasonality of flowering is widespread in the Rosaceae and is also found in the majority of temperate polycarpic perennials. Genetic analysis has shown that seasonal flowering is controlled by a single gene in F. vesca, the SEASONAL FLOWERING LOCUS (SFL). Here, we report progress towards the marker-assisted selection and positional cloning of SFL, in which three ISSR markers linked to SFL were converted to locus-specific sequence-characterized amplified region (SCAR1–SCAR3) markers to allow large-scale screening of mapping progenies. We believe this is the first study describing the development of SCAR markers from ISSR profiles. The work also provides useful insight into the nature of polymorphisms generated by the ISSR marker system. Our results indicate that the ISSR polymorphisms originally detected were probably caused by point mutations in the positions targeted by primer anchors (causing differential PCR failure), by indels within the amplicon (leading to variation in amplicon size) and by internal sequence differences (leading to variation in DNA folding and so in band mobility). The cause of the original ISSR polymorphism was important in the selection of appropriate strategies for SCAR-marker development. The SCAR markers produced were mapped using a F. vesca f. vesca × F. vesca f. semperflorens testcross population. Marker SCAR2 was inseparable from the SFL, whereas SCAR1 mapped 3.0 cM to the north of the gene and SCAR3 1.7 cM to its south.
Resumo:
A RAPD-PCR assay was developed and used to test For competitive variability in growth of the nematode biological control fungus Pochonia chlamydosporia. Saprophytic competence in soil with or without tomato plants was examined in three isolates of the fungus: RES 280 (J), originally isolated from potato cyst nematode (PCN) cysts; RES 200 (1) and RES 279 (S), both originally isolated from root knot nematode (RKN) eggs. Viable counts taken at 70 d indicated that I was the best saprophyte followed by S, with J the poorest. RAPD-PCR analysis of colonies from mixed treatments revealed that there was a cumulative effect of adding isolates to the system. This Suggested that the isolates did not interact and that they may occupy separate niches in soil and the rhizosphere. To investigate parasitic ability, soils were seeded with two isolates of the fungus: J and S, singly or in combination. Tomato or potato plants were grown in these soils; free of nematodes, or inoculated with PCN or RKN, and incubated for 77 d. The abundance of the PCN isolate J in PCN cysts was significantly greater than that of the RKN isolate S but in RKN egg masses, S was significantly more abundant than J. RAPD-PCR analysis of colonies from mixed treatments confirmed that J was more abundant than S ill PCN cysts whereas the converse was observed on RKN egg masses. This substantiates the phenomenon of nematode host preference at the infraspecific level of P. chlamydosporia and highlights its relevance for biological control of plant parasitic nematodes.