976 resultados para run-of-river reservoir
Resumo:
Accelerator mass spectrometry (AMS) radiocarbon dating of ostracod and gastropod shells from the southwestern Black Sea cores combined with tephrochronology provides the basis for studying reservoir age changes in the lateglacial Black Sea. The comparison of our data with records from the northwestern Black Sea shows that an apparent reservoir age of ~1450 14C yr found in the glacial is characteristic of a homogenized water column. This apparent reservoir age is most likely due to the hardwater effect. Though data indicate that a reservoir age of ~1450 14C yr may have persisted until the Bølling-Allerød warm period, a comparison with the GISP2 ice-core record suggests a gradual reduction of the reservoir age to ~1000 14C yr, which might have been caused by dilution effects of inflowing meltwater. During the Bølling-Allerød warm period, soil development and increased vegetation cover in the catchment area of the Black Sea could have hampered erosion of carbonate bedrock, and hence diminished contamination by "old" carbon brought to the Black Sea basin by rivers. A further reduction of the reservoir age most probably occurred contemporary to the precipitation of inorganic carbonates triggered by increased phytoplankton activity, and was confined to the upper water column. Intensified deep water formation subsequently enhanced the mixing/convection and renewal of intermediate water. During the Younger Dryas, the age of the upper water column was close to 0 yr, while the intermediate water was ~900 14C yr older. The first inflow of saline Mediterranean water, at ~8300 14C yr BP, shifted the surface water age towards the recent value of ~400 14C yr.
Resumo:
Riverine water and sediment discharge to the Arctic Ocean is among the most important parameters influencing Arctic climate. It is clear that the evaluation of Arctic paleoclimate requires information on the paleodischarge of major rivers entering the sedimentation basin. Presently, the water discharge of the Ob River accounts for about 12% of the total input of river water into the Arctic Ocean. During the investigation of the Kara Sea in the framework of the Russian-German SIRRO Project, the history of Yenisei discharge received much attention in a number of publications. This paper presents the results of lithological and geochemical investigations with application to the Holocene discharge of the Ob River. Qualitative (SiO2, Al2O3, K2O, and some modules) and quantitative (sedimentation rates and absolute masses of sedimentary material) parameters were used to characterize the history of the Ob sediment discharge. It was shown that the investigated paleochannels of the Ob were initiated at the Pleistocene-Holocene boundary, and during the first half of the Holocene, the river discharge decreased irregularly with decreasing age of sediments. The observed maxima are in fairly good agreement with the data for the Yenisei. We proposed a hypothesis on the influence of glacioisostatic movements in the marginal region of the former Kara ice sheet of late Valdai age on the cessation of marine-fluvial glaciation in the paleochannels of Ob and Yenisei in the periphery of the Ob-Yenisei shoal.
Resumo:
Strontium isotopic ratios of gypsums recovered from upper Miocene (Messinian) evaporites at ODP Leg 107 Holes 652A, 653B, and 654A (Tyrrhenian Sea) are lower than expected. The values for the Messinian balatino-like gypsum, single gypsum crystals, and anhydrites range from 0.70861 to 0.70886 and are approximately 25 * 10**-5 less than would be expected for evaporites precipitated from Messinian seawater (0.70891-0.70902). Pre-evaporitic planktonic foraminifers from Hole 654A show variable degrees of dolomitization and 87Sr/86Sr values that irregularly decrease upward from normal marine values approximately 81m below the lowest evaporite occurrence. This suggests diagenetic alteration by advecting interstitial water with a low 87Sr/86Sr ratio or that the lower Sr isotopic ratios for the Messinian evaporites could have resulted from a greater influence of fresh water on the Sr isotopic composition of the desiccating Tyrrhenian Sea. Fluctuations of the 87Sr/86Sr-ratio for evaporites in the sedimentary cycles recognized for Holes 653B and 654A, the generally low Sr isotopic ratio of river water entering the Mediterranean Sea, and the presence of dwarf marine microfossils suggest that the 87Sr/86Sr ratio of the evaporites responded to hydrologic variations in a very restricted basin with variable rates of marine and fresh water input. The strontium isotopic ratios of the Messinian anhydrites from the proposed lacustrine sequence at Hole 652A fall in the same range as the marine evaporites from Holes 654A and 653B. This suggests a common or similar origin of the brines at the three locations. The complex depositional and hydrologic conditions in the Mediterranean during the Messinian salinity crisis preclude the use of Sr isotopic values from the evaporites for stratigraphic correlation and dating. They are, however, very useful in the interpretation of the depositional history of the basin. General calculations assuming a closed system suggest that the 87Sr/86Sr ratio of Messinian seawater (-0.7090) could be reduced to that of the evaporites (-0.7087) by mixing with fresh water (e.g., Nile River) in times of 10**4 to 10**5 yr.
Resumo:
(of book) Problems of origin of the hydrosphere, history of formation and development of underground water, of the World Ocean, lakes, rivers, surface and subsurface ice are under consideration in the book. An attempt of the complete reconstruction of the continental hydrosphere in the Eastern Europe in Late Pleistocene is made. Methods of paleohydrologic studies are described. Some papers are devoted to paleoclimatic problems of river runoff formation and paleotermic evolution of continental glaciers.
Resumo:
Bacterial cell number in the water column of the Kara Sea and estuary areas of the Ob and Yenisey Rivers was determined in water samples collected at 32 stations at depths from the surface to 200 m. The samples were analyzed by direct microscopy. In most parts of the sea microorganism concentrations ranged generally from 103 to 104 cells per ml and their biomasses from milligrams to tens of mg/m**3. Bacterioplankton concentration of river waters was much higher than in the open sea, especially in Ob waters. The highest bacteria concentrations, hundreds of thousands cells per ml with biomass exceeding 200 mg/m**3, were found in the southern part of the Ob section. Minimal concentrations were observed in the northeastern part and near the southeastern part of the Ob section and the southeastern coast of Novaya Zemlya. Dark CO2 fixation rates determined at some stations indicated low bacteria biomass production.
Resumo:
The dataset contains measurements of river stage and discharge for one sites along the Akuliarusiarsuup Kuua River's northern tributary, with 30 minute temporal resolution between June 2008 and August 2013 This river is a tributary to the Watson River discharging into Kangerlussuaq Fjord by the town of Kangerlussuaq, Southwest Greenland. Additional data of water temperature, air pressure are also provided. Compared to version 1.0 of the dataset, this dataset used a total of 36 in situ discharge observations collected between 2008 and 2012 to construct the rating curve. Furthermore, data of Station AK-004-001 between 2010-09-06T11:30 to 2010-09-07T13:30 have been removed from version 2.0 because these values were likely caused by backflow when a jokulhlaup from a large glacier dammed lake caused increased water levels in the downstreams lake. Thus, data measured at AK-004-001 between 2010-09-06T11:30 to 2010-09-07T13:30 are not representative for the AK-004 catchment.
Resumo:
The Astoria submarine fan, located off the coast of Washington and Oregon, has grown throughout the Pleistocene from continental input delivered by the Columbia River drainage system. Enormous floods from the sudden release of glacial lake water occurred periodically during the Pleistocene, carrying vast amounts of sediment to the Pacific Ocean. DSDP site 174, located on the southern distal edge of the Astoria Fan, is composed of 879 m of terrigenous sediments. The section is divided into two major units separated by a distinct seismic discontinuity: an upper, turbidite fan unit (Unit I), and an underlying finer-grained unit (Unit II). Both units have overlapping ranges of Nd and Hf isotope compositions, with the majority of samples having e-Nd values of -7.1 to -15.2 and eHf values -6.2 to -20.0; the most notable exception is the uppermost sample in the section, which is identical to modern Columbia River sediment. Nd depleted mantle model ages for the site range from 2.0 to 1.2 Ga and are consistent with derivation from cratonic Proterozoic source regions, rather than Cenozoic and Mesozoic terranes proximal to the Washington-Oregon coast. The Astoria Fan sediments have significantly less radiogenic Nd (and Hf) isotopic compositions than present day Columbia River sediment (e-Nd=-3 to -4; [Goldstein, S.J., Jacobsen, S.B., 1987. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth. Planet. Sci. Lett. 87, 249-265; doi:10.1016/0012-821X(88)90013-1]), and suggest that outburst flooding, tapping Proterozoic source regions, was the dominant sediment transport mechanism in the genesis and construction of the Astoria Fan. Pb isotopes form a highly linear 207Pb/204Pb - 206Pb/204Pb array, and indicate the sediments are a binary mixture of two disparate sources with isotopic compositions similar to Proterozoic Belt Supergroup metasediments and Columbia River Basalts. The combined major, trace and isotopic data argue that outburst flooding was responsible for depositing the majority (top 630 m) of the sediment in the Astoria Fan.
Resumo:
The GEMS-GLORI register, circulated by UNEP for review in 1996, lists 555 world major rivers discharging to oceans (Q > 10 km**3/year, or A > 10 000 km**2, or sediment discharge > 5Mt/year, or basin population >5M people). Up to 48 river attributes are listed, including major ions and nutrients (C, N, P) in both dissolved, particulate, organic and inorganic forms. For many rivers, two or three sets of data are provided with relevant periods of records and references. Although half of the selected rivers are not yet documented for water quality, most of the first 40 rivers are well described (Irrawady, Zambezi, Ogooue, Magdalena, are noted exceptions). Altogether about 10 000 individual data from 500 references are listed. The global coverage in terms of river discharge and/or drainage area ranges from 40 to 67% for most major water quality attributes but drops to 25% for some organic and/or particulate forms of N and P. Planned development of the register includes collection of information on particulate chemistry and data on endorheic rivers and selected tributaries.
Resumo:
The concentration of dissolved Sr and the distribution of 87Sr/86Sr isotope ratios in Leg 113 interstitial waters may be interpreted in terms of mixing of Sr from four different reservoirs: indigenous seawater, marine carbonate minerals, and basaltic and siliceous detrital material. The input to the pore water from these reservoirs is determined by the reactivity of the reservoir rather than its size. The presence of strontium derived from siliceous detrital material is unequivocally demonstrated in the pore waters of the hemipelagic deposits, and is also significant in the calcareous Maud Rise sediments due to the unusually low degree of carbonate recrystallization. Also, alteration of basic volcanic material is important at several sites.
Resumo:
Surface sediments from 5 profiles between 30 and 3000 m water depth off W Africa (12-19° N) have been studied for their sand fraction composition and their total calcium carbonate and organic matter contents to evaluate the effect of climatic and hydrographic factors on actual sedimentation. On the shelf and upper slope (< 500 m), currents prevent the deposition of significant amounts of fine-grained material. The sediments forming here are characterized by high sand contents (> 60 %; in most samples > 89 %), low organic carbon contents (in most samples < 0.8 %), high median diameters of the sand fraction (120-500 µm), and by a predominance of quartz and biogenic relict shells (most abundant: molluscs and bryozoans) in the sand fraction. Median diameters of total sand fraction and of major biogenic sand fraction components (biogenic relict material, benthonic molluscs, benthonic and planktonic foraminifers) co-vary to some extent and show maximum values in 100-300 m water depth, reflectingthe sorting effect of currents (perhaps the northward flowing undercurrent). In this water depth, biogenic relict material is considerably enriched relative to wuartz, the second dominating sand fraction component on the shelf and upper slope, resulting in distinct calcium carbonate maxima of the bulk sediments. The influence of the undercurrent is also reflected in a northward transport of fine grained river load and perhaps in the distribution of the red stained, coarse silt and sand-size clay aggregates, which show maxima in 300-500 m water depth. They probably originate from tropical soils. Abundant coarse red-stained quartz on the shelf off Cape Roxo (12-130° N) suggests a southward extension of last glacial dune fields to this latitude. Below about 500 m water depth, current influence becomes negligible - as indicated by a strong decrease in sand content, a concomitant increase in sedimentary organic carbon contents (up to 2.5-3.5 %), and the occurence of high mica/quartz ratios in the sand fraction. Downslope transport, presumably due to the bioturbation mechanism, is indicated by the presence of coarse shelf-borne particles (glauconite, relict shells) down to about 1000 m water depth. The fine/coarse ratio (clay + silt/sand) of the sediments from water deoth > 500 m never exceed a value of 11 in northern latitudes (19° - 26° N), but shows distinct maxima, ranging from 50 to 120, at latitudes 18°, 17° 15°30', and 14° N in about 2000 m water depth. This distribution is attributed to the deposition of fine-grained river load at the continental slope between 18° and 14° N, brought into the sea by the Senegal and souther rivers and transported northward ny the undercurrent. Strong calcium carbonate dissolution is indicated by the complete disappearance of pteropodes (aragonite) and high fragmentation of the planktoic foraminifers (calcite) in sediments from water depth > 300-600 m. Fragmentation ratios of planktonic foraminifers were found to depend on the organic carbon/carbonate ratios of the sediment suggesting that calcite dissolution at the sea bottom may also be significant in shelf and continental slope water depths if the organic matter/carbonate ratio of the surface sediment is high and the test remain long enough within the oxidizing layer on the top of the sulfate reduction zone. The fact that in the region under study intensity and anual duration of upwelling decrease from north to south is neither reflected in the composition on the sand fraction (i.e. radiolarian and fish debris contents, radiolarian/planktonic foraminiferal ratios, benthos/plankton ratios of foraminifers), nor in the sedimentary organic carbon distribution. On the contrary, these parameters even show in comparable water depths a tendency for highest values in the south, partly because primary production rates remain high in the whole region, particularly on the shelf, due to the nutrient input by rivers in the south. In addition, several hydrographic, sedimentological and climatic factors severely affect their distribution - for example currents, dissolution, grain size composition, deposition of river load, and bulk sedimentation rats.
Resumo:
Coral reef organisms are increasingly and simultaneously affected by global and local stressors such as ocean acidification (OA) and reduced light availability. However, knowledge of the interplay between OA and light availability is scarce. We exposed 2 calcifying coral reef species (the scleractinian coral Acropora millepora and the green alga Halimeda opuntia) to combinations of ambient and increased pCO2 (427 and 1073 µatm, respectively), and 2 light intensities (35 and 150 µmol photons/m**2/s) for 16 d. We evaluated the individual and combined effects of these 2 stressors on weight increase, calcification rates, O2 fluxes and chlorophyll a content for the species investigated. Weight increase of A. millepora was significantly reduced by OA (48%) and low light intensity (96%) compared to controls. While OA did not affect coral calcification in the light, it decreased calcification in the dark by 155%, leading to dissolution of the skeleton. H. opuntia weight increase was not affected by OA, but decreased (40%) at low light. OA did not affect algae calcification in the light, but decreased calcification in the dark by 164%, leading to dissolution. Low light significantly reduced gross photosynthesis (56 and 57%), net photosynthesis (62 and 60%) and respiration (43 and 48%) of A. millepora and H. opuntia, respectively. In contrast to A. millepora, H. opuntia significantly increased chlorophyll content by 15% over the course of the experiment. No interactive effects of OA and low light intensity were found on any response variable for either organism. However, A. millepora exhibited additive effects of OA and low light, while H. opuntia was only affected by low light. Thus, this study suggests that negative effects of low light and OA are additive on corals, which may have implications for management of river discharge into coastal coral reefs.
Resumo:
Geological storage of CO2 that has been captured at large, point source emitters represents a key potential method for reduction of anthropogenic greenhouse gas emissions. However, this technology will only be viable if it can be guaranteed that injected CO2 will remain trapped in the subsurface for thousands of years or more. A signi?cant issue for storage security is the geomechanical response of the reservoir. Concerns have been raised that geomechanical deformation induced by CO2 injection will create or reactivate fracture networks in the sealing caprocks, providing a pathway for CO2 leakage. In this paper, we examine three large-scale sites where CO2 is injected at rates of ab. 1 megatonne/y or more: Sleipner, Weyburn, and In Salah. We compare and contrast the observed geomechanical behavior of each site, with particular focus on the risks to storage security posed by geomechanical deformation. At Sleipner, the large, high-permeability storage aquifer has experienced little pore pressure increase over 15 y of injection, implying little possibility of geomechanical deformation. At Weyburn, 45 y of oil production has depleted pore pressures before increases associated with CO2 injection. The long history of the ?eld has led to complicated, sometimes nonintuitive geomechanical deformation. At In Salah, injection into the water leg of a gas reservoir has increased pore pressures, leading to uplift and substantial microseismic activity. The differences in the geomechanical responses of these sites emphasize the need for systematic geomechanical appraisal before injection in any potential storage site.
Resumo:
A curve describing the variation of the strontium isotopic composition of seawater for the late Neogene (9 to 2 Ma) was constructed from 87Sr/86Sr analyses of marine carbonate in five Deep Sea Drilling Project (DSDP) sites: 502, 519, 588, 590, and 593. The strontium isotopic composition of the oceans increased between 9 and 2 Ma with several changes in slope. From 9 to 5.5 Ma, 87Sr/86Sr values were nearly constant at ~0.708925. Between 5.5 and 4.5 Ma, 87Sr/86Sr ratios increased monotonically at a rate of not, vert, similar 1 * 10**-4 per million years. The steep slope during this interval provides the potential for high resolution strontium isotope stratigraphy across the Miocene/Pliocene boundary. The rate of change of 87Sr/86Sr decreases to near zero again during the interval 4.5-2.5 Ma, and ratios average 0.709025. The relatively rapid increase of 87Sr/86Sr between 5.5 and 4.5 Ma must be related to changes in the flux or average 87Sr/86Sr ratios of the major inputs of Sr to the oceans. Quantitative modelling of these inputs suggests that the increase was most probably caused by an increase in the dissolved riverine flux of strontium to the oceans, an increase in the average 87Sr/86Sr composition of river water, or some combination of these parameters. Modelling of this period as a transient-state requires a pulse-like increase in the input of 87Sr to the oceans between 5.5 and 4.5 Ma. Alternatively, the 5.5-4.5 Ma period can be modelled as a simple transition from one steady-state to another if the oceanic residence time of strontium was eight times less than the currently accepted value of 4 Ma. During the time interval of steep 87Sr/86Sr increase, other geochemical and sedimentologic changes also occur including an increase in sediment accumulation rates, a drop in the calcite compensation depth (CCD), and a decrease in the delta13C of dissolved bicarbonate (i.e., "carbon shift"). The simplest mechanism to explain 87Sr/86Sr variation and these related geochemical changes is to invoke an increase in the dissolved chemical fluxes carried by rivers to the oceans. This, in turn, implies increased chemical denudation rates of the continents and shelves during the late Neogene. The increase in chemical weathering rates is attributed to increased exposure of the continents by eustatic regression, intensified glacial/interglacial cycles, and accelerated rates of global tectonism beginning at 5.5 Ma during the latest Miocene.
Resumo:
A brief (~150 kyr) period of widespread global average surface warming marks the transition between the Paleocene and Eocene epochs, ~56 million years ago. This so-called "Paleocene-Eocene thermal maximum" (PETM) is associated with the massive injection of 13C-depleted carbon, reflected in a negative carbon isotope excursion (CIE). Biotic responses include a global abundance peak (acme) of the subtropical dinoflagellate Apectodinium. Here we identify the PETM in a marine sedimentary sequence deposited on the East Tasman Plateau at Ocean Drilling Program (ODP) Site 1172 and show, based on the organic paleothermometer TEX86, that southwest Pacific sea surface temperatures increased from ~26 °C to ~33°C during the PETM. Such temperatures before, during and after the PETM are >10 °C warmer than predicted by paleoclimate model simulations for this latitude. In part, this discrepancy may be explained by potential seasonal biases in the TEX86 proxy in polar oceans. Additionally, the data suggest that not only Arctic, but also Antarctic temperatures may be underestimated in simulations of ancient greenhouse climates by current generation fully coupled climate models. An early influx of abundant Apectodinium confirms that environmental change preceded the CIE on a global scale. Organic dinoflagellate cyst assemblages suggest a local decrease in the amount of river run off reaching the core site during the PETM, possibly in concert with eustatic rise. Moreover, the assemblages suggest changes in seasonality of the regional hydrological system and storm activity. Finally, significant variation in dinoflagellate cyst assemblages during the PETM indicates that southwest Pacific climates varied significantly over time scales of 103 - 104 years during this event, a finding comparable to similar studies of PETM successions from the New Jersey Shelf.
Resumo:
Specimens of two species of planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera, were grown under controlled laboratory conditions at a range of temperatures (18-31 °C), salinities (32-44 psu) and pH levels (7.9-8.4). The shells were examined for their calcium isotope compositions (d44/40Ca) and strontium to calcium ratios (Sr/Ca) using Thermal Ionization Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Although the total variation in d44/40Ca (~0.3 per mill) in the studied species is on the same order as the external reproducibility, the data set reveals some apparent trends that are controlled by more than one environmental parameter. There is a well-defined inverse linear relationship between d44/40Ca and Sr/Ca in all experiments, suggesting similar controls on these proxies in foraminiferal calcite independent of species. Analogous to recent results from inorganically precipitated calcite, we suggest that Ca isotope fractionation and Sr partitioning in planktic foraminifera are mainly controlled by precipitation kinetics. This postulation provides us with a unique tool to calculate precipitation rates and draws support from the observation that Sr/Ca ratios are positively correlated with average growth rates. At 25 °C water temperature, precipitation rates in G. siphonifera and G. ruber are calculated to be on the order of 2000 and 3000 µmol/m**2/h, respectively. The lower d44/40Ca observed at 29 °C in both species is consistent with increased precipitation rates at high water temperatures. Salinity response of d44/40Ca (and Sr/Ca) in G. siphonifera implies that this species has the highest precipitation rates at the salinity of its natural habitat, whereas increasing salinities appear to trigger higher precipitation rates in G. ruber. Isotope effects that cannot be explained by precipitation rate in planktic foraminifera can be explained by a biological control, related to a vacuolar pathway for supply of ions during biomineralization and a pH regulation mechanism in these vacuoles. In case of an additional pathway via cross-membrane transport, supplying light Ca for calcification, the d44/40Ca of the reservoir is constrained as -0.2 per mill relative to seawater. Using a Rayleigh distillation model, we calculate that calcification occurs in a semi-open system, where less than half of the Ca supplied by vacuolization is utilized for calcite precipitation. Our findings are relevant for interpreting paleo-proxy data on d44/40Ca and Sr/Ca in foraminifera as well as understanding their biomineralization processes.