958 resultados para rodent malarial parasites
Resumo:
Microscopic endoparasites belonging to the Phylum Myxozoa provide a striking example of how much there is still to be learned about the diversity of the Metazoa. Recent research on myxozoans has provided new insights into evolution within the Bilateria, revealing unparalleled levels of morphological simplification associated with parasitism, a home for an orphan worm, and a hypothesis of the endosymbiotic origin(s) for extrusible intracellular organelles in myxozoans and cnidarians. In addition, discovery of the source of a devastating disease of salmonid fish has enabled researchers to identify two ancient clades within the Myxozoa, and has exposed new mysteries concerning myxozoan life-cycle evolution and evolutionary diversification. This plethora of new insights exemplifies the fundamental value of studying obscure organisms.
Resumo:
Unusually among the mammals, humans lack an outer layer of protective fur or hair. We propose the hypothesis that humans evolved hairlessness to reduce parasite loads, especially ectoparasites that may carry disease. We suggest that hairlessness is maintained by these naturally selected benefits and by sexual selection operating on both sexes. Hairlessness is made possible in humans owing to their unique abilities to regulate their environment via fire, shelter and clothing. Clothes and shelters allow a more flexible response to the external environment than a permanent layer of fur and can be changed or cleaned if infested with parasites. Naked mole-rats, another hairless and non-aquatic mammal species, also inhabit environments in which ectoparasite transmission is expected to be high, but in which temperatures are closely regulated. Our hypothesis explains features of human hairlessness-such as the marked sex difference in body hair, and its retention in the pubic regions-that are not explained by other theories.
Resumo:
The excitatory amino acid transporters (EAAT) removes neurotransmitters glutamate and aspartate from the synaptic cleft. Most CNS glutamate uptake is mediated by EAAT2 into glia, though nerve terminals show evidence for uptake, through an unknown transporter. Reverse-transcriptase PCR identified the expression of EAAT1, EAAT2, EAAT3 and EAAT4 mRNAs in primary cultures of mouse cortical or striatal neurones. We have used synaptosomes and glial plasmalemmal vesicles (GPV) from adult mouse and rat CNS to identify the nerve terminal transporter. Western blotting showed detectable levels of the transporters EAAT1 (GLAST) and EAAT2 (Glt-1) in both synaptosomes and GPVs. Uptake of [3H]D-aspartate or [3H]L-glutamate into these preparations revealed sodium-dependent uptake in GPV and synaptosomes which was inhibited by a range of EAAT blockers: dihydrokainate, serine-o-sulfate, l-trans-2,4-pyrrolidine dicarboxylate (PDC) (+/-)-threo-3-methylglutamate and (2S,4R )-4-methylglutamate. The IC50 values found for these compounds suggested functional expression of the 'glial, transporter, EAAT2 in nerve terminals. Additionally blockade of the majority EAAT2 uptake sites with 100 micro m dihydrokainate, failed to unmask any functional non-EAAT2 uptake sites. The data presented in this study indicate that EAAT2 is the predominant nerve terminal glutamate transporter in the adult rodent CNS.
Resumo:
A survey of the knowledge, attitudes and practices (KAP) of 100 rice farmers and 50 coconut farmers was conducted in the coastal lowland agro-ecosystems of the Sierra Madre Biodiversity Corridor, Luzon, Philippines to identify current rodent management practices and to understand the extent of rat damage and the attitudes of farmers to community actions for rodent management. Pests were most commonly listed as one of the three most important rice and coconut production constraints. Other major crop production constraints were typhoons and insufficient water. Farmers consider rats to be the major pest of coconut and of rice during the wet season rice crop, with average yield losses of 3.0% and 13.2%, respectively. Rice and coconut farmers practised a wide range of rodent management techniques. These included scrub clearance, hunting and trapping. Of the 42 rice farmers and 3 coconut farmers that applied rodenticides to control rodents, all used the acute rodenticide, zinc phosphide. However, only ten rice farmers (23.8%) applied rodenticides prior to the booting stage and only seven farmers (15.6%) conducted pre-baiting before applying zinc phosphide. The majority of farmers belonged to farmer organisations and believed that rat control can only be done by farmers working together. However, during the last cropping season, less than a third of rice farmers (31.2%) applied rodent management as a group. In order to reduce the impact of rodents on the farmers of the coastal lowlands of the Sierra Madre Biodiversity Corridor, integrated management strategies need to be developed that specifically target the pest rodents in a sustainable manner, and community actions for rodent management should be promoted.
Integrated cytokine and metabolic analysis of pathological responses to parasite exposure in rodents
Resumo:
Parasitic infections cause a myriad of responses in their mammalian hosts, on immune as well as on metabolic level. A multiplex panel of cytokines and metabolites derived from four parasite-rodent models, namely, Plasmodium berghei-mouse, Trypanosoma brucei brucei-mouse, Schistosoma mansoni-mouse, and Fasciola hepatica-rat were statistically coanalyzed. 1H NMR spectroscopy and multivariate statistical analysis were used to characterize the urine and plasma metabolite profiles in infected and noninfected animals. Each parasite generated a unique metabolic signature in the host. Plasma cytokine concentrations were obtained using the ‘Meso Scale Discovery’ multi cytokine assay platform. Multivariate data integration methods were subsequently used to elucidate the component of the metabolic signature which is associated with inflammation and to determine specific metabolic correlates with parasite-induced changes in plasma cytokine levels. For example, the relative levels of acetyl glycoproteins extracted from the plasma metabolite profile in the P. berghei-infected mice were statistically correlated with IFN-γ, whereas the same cytokine was anticorrelated with glucose levels. Both the metabolic and the cytokine data showed a similar spatial distribution in principal component analysis scores plots constructed for the combined murine data, with samples from all infected animals clustering according to the parasite species and whereby the protozoan infections (P. berghei and T. b. brucei) grouped separately from the helminth infection (S. mansoni). For S. mansoni, the main infection-responsive cytokines were IL-4 and IL-5, which covaried with lactate, choline, and D-3-hydroxybutyrate. This study demonstrates that the inherently differential immune response to single and multicellular parasites not only manifests in the cytokine expression, but also consequently imprints on the metabolic signature, and calls for in-depth analysis to further explore direct links between immune features and biochemical pathways.
Resumo:
Models of functional connectivity in cortical cultures on multi-electrodes arrays may aid in understanding how cognitive pathways form and improve techniques that aim to interface with neuronal systems. To enable research on such models, this study uses both data- and model-driven approaches to determine what dependencies are present in and between functional connectivity networks derived from bursts of extracellularly recorded activity. Properties of excitation in bursts were analysed using correlative techniques to assess the degree of linear dependence and then two parallel techniques were used to assess functional connectivity. Three models presenting increasing levels of spatio-temporal dependency were used to capture the dynamics of individual functional connections and their consistencies were verified using surrogate data. By comparing network-wide properties between model generated networks and functional networks from data, complex interdependencies were revealed. This indicates the persistent co-activation of neuronal pathways in spontaneous bursts, as can be found in whole brain structures.
Resumo:
In the lowland agro-forest of the Sierra Madre Biodiversity Corridor (SMBC), it is considered that a native rodent species, Rattus everetti is competitively dominant over an invasive pest species, Rattus tanezumi. The main aim of this study was to assess the response of R. tanezumi following short term removal of R. everetti. We tested this experimentally by trapping and removing R. everetti from two treatment sites in agro-forest habitat on three occasions over three consecutive months. This was followed by three months of non-removal trapping. Two non-treatment sites were trapped for comparison. Following R. everetti removal, R. everetti individuals rapidly immigrated into the treatment sites and a significantly higher proportion of R. tanezumi females were in breeding condition in the treatment sites than in the non-treatment sites. The results from this study provide evidence of competition between native and invasive rodent species in complex agro-ecosystems. We were also able to demonstrate that R. everetti populations are able to recover rapidly from the non-target effects of short-term lethal control in and around agro-forest.
Resumo:
We designed FISH-probes for two distinct microsporidian clades and demonstrated their application in detecting respectively Nosema/Vairimorpha and Dictyoceola species. We applied them to study the vertical transmission of two microsporidia infecting the amphipod Gammarus duebeni
Resumo:
BACKGROUND: Reduction of vegetation height is recommended as a management strategy for controlling rodent pests of rice in South-east Asia, but there are limited field data to assess its effectiveness. The breeding biology of the main pest species of rodent in the Philippines, Rattus tanezumi, suggests that habitat manipulation in irrigated rice–coconut cropping systems may be an effective strategy to limit the quality and availability of their nesting habitat. The authors imposed a replicated manipulation of vegetation cover in adjacent coconut groves during a single rice-cropping season, and added artificial nest sites to facilitate capture and culling of young. RESULTS: Three trapping sessions in four rice fields (two treatments, two controls) adjacent to coconut groves led to the capture of 176 R. tanezumi, 12Rattus exulans and seven Chrotomysmindorensis individuals. There was no significant difference in overall abundance between crop stages or between treatments, and there was no treatment effect on damage to tillers or rice yield. Only two R. tanezumi were caught at the artificial nest sites. CONCLUSION: Habitat manipulation to reduce the quality of R. tanezumi nesting habitat adjacent to rice fields is not effective as a lone rodent management tool in rice–coconut cropping systems.
Resumo:
Parasitic infections with gastrointestinal nematodes (GINs) still represent a worldwide major pathological threat associated with the outdoor production of various livestock species. Because of the widespread resistance to synthetic chemical anthelmintics, there is a strong impetus to explore novel approaches for a more integrated management of the infections. The use of nutraceuticals in the control of GINs is one of the alternatives which has been widely studied for since 20 years. The objectives of this review are: i) to define and illustrate the concept of ‘nutraceutical’ in the context of veterinary parasitology based on data obtained on the most studied GIN models in small ruminants, the tannin-containing legumes (Fabaceae); ii) to illustrate how the ‘nutraceutical concept’ could be expanded to other plants, other livestock production systems and other GI parasitic diseases, and iii) to explain how this concept is opening up new research fields for better understanding the interactions between the host, the digestive parasites and the environment.
Resumo:
BACKGROUND Little is known about native and non-native rodent species interactions in complex tropical agro-ecosystems. We hypothesised that the native non-pest rodent Rattus everetti may be competitively dominant over the invasive pest rodent Rattus tanezumi within agroforests. We tested this experimentally by using pulse removal for three consecutive months to reduce populations of R. everetti in agroforest habitat and assessed over 6-months the response of R. tanezumi and other rodent species. RESULTS Following removal, R. everetti individuals rapidly immigrated into removal sites. At the end of the study period, R. tanezumi were larger and there was a significant shift in their microhabitat use with respect to the use of ground vegetation cover following the perturbation of R. everetti. Irrespective of treatment, R. tanezumi selected microhabitat with less tree canopy cover, indicative of severely disturbed habitat, whereas, R. everetti selected microhabitat with a dense canopy. CONCLUSION Our results suggest that sustained habitat disturbance in agroforests favours R. tanezumi, whilst the regeneration of agroforests towards a more natural state would favour native species and may reduce pest pressure in adjacent crops. In addition, the rapid recolonisation of R. everetti suggests this species would be able to recover from non-target impacts of short-term rodent pest control.
Resumo:
Rodents are involved in the transmission to human beings of several diseases, including liptospirosis, which shows high lethality rates in Sao Paulo municipality. Despite this, few studies have assessed the relationship existing between urban environmental conditions and building rodent infestation. With the purpose of clarifying this relationship, an analysis has been conducted in order to quantify the influence of environmental factors upon rodent infestation on a low-income district. Diagnosis of the environmental situation has been performed to evaluate the frequency according to which harborage, food and access sources occur, and a survey on infestation rates in 2175 dwellings in the area studied. The logistic regression analysis showed that among the environmental variables, the one that showed the closest association with rodent infestation was access; followed by harborage, and food. It was concluded that poor socioeconomic and environmental conditions in the area propitiate the occurrence of high rodent infestation rates.