931 resultados para road pavement deflection
Resumo:
This case study report describes the stages involved in the translation of research on night-time visibility into standards for the safety clothing worn by roadworkers. Vision research demonstrates that when lights are placed on the moveable joints of the body and the person moves in a dark setting, the phenomenon known as “biological motion or biomotion” occurs, enabling rapid and accurate recognition of the human form although only the lights can be seen. QUT was successful in gaining funding from the Australian Research Council for a Linkage grant due to the support of the predecessors of the Queensland Department of Transport and Main Roads (TMR) to research the biomotion effect in on-road settings using materials that feature in roadworker clothing. Although positive results were gained, the process of translating the research results into policy, practices and standards relied strongly on the supportive efforts of TMR staff engaged in the review and promulgation of national standards. The ultimate result was the incorporation of biomotion marking into AS/NZS 4602.1 2011. The experiences gained in this case provide insights into the processes involved in translating research into practice.
Resumo:
Due to the propensity of fleet incidents, poor organisational survey results and a lack of fleet safety systems, it was evident that Redland City Council were underperforming, experiencing a variety of work related road safety issues and possessed a low fleet safety culture. As a result of an audit process, and the identification of gaps in organisational process within the fleet safety area Redland City Council embarked upon the enormous task of strategically implementing initiatives and improving fleet safety across the organisation. The strategies utilised within the Redland City Council Fleet Safety Initiative were implemented utilising a systematic process and adopted a multi-disciplinary approach to improve overall fleet safety. Organisational initiatives targeting fleet safety aspects have benefited the Council by the development of an improved organisational culture, including safer driver attitudes and behaviour. This paper outlines the road to recovery for Redland City Council in relation to its fleet safety initiatives.
Resumo:
Unless sustained, coordinated action is generated in road safety, road traffic deaths are poised to rise from approximately 1.3 to 1.9 million a year by 2020 (Krug, 2012). To generate this harmonised response, road safety management agencies are being urged to adopt multisectoral collaboration (WHO, 2009b), which is achievable through the principle of policy integration. Yet policy integration, in its current hierarchical format, is marred by a lack of universality of its interpretation, a failure to anticipate the complexities of coordinated effort, dearth of information about its design and the absence of a normative perspective to share responsibility. This paper addresses this ill-conception of policy integration by reconceptualising it through a qualitative examination of 16 road safety stakeholders’ written submissions, lodged with the Australian Transport Council in 2011. The resulting, new principle of policy integration, Participatory Deliberative Integration, provides a conceptual framework for the alignment of effort across stakeholders in transport, health, traffic law enforcement, relevant trades and the community. With the adoption of Participatory Deliberative Integration, road safety management agencies should secure the commitment of key stakeholders in the development and implementation of, amongst other policy measures, National Road Safety Strategies and Mix Mode Integrated Timetabling.
Resumo:
This paper addresses the problem of scheduling a cane transport system involving both rail transport and road transport, where the road transport operates from several sidings in the rail network. An iterative approach for scheduling the rail transport system has been developed using existing rail transport scheduling tools. The assumption that harvesters serviced by road transport are effectively operating from the rail siding from which their bins are supplied seems a reasonable starting point for the analysis. There is a need to manually modify the schedule to take into account the road transport schedule to ensure that full bins are not collected before the road transport system delivers them back to the rail siding.
Resumo:
This study used a video-based hazard perception dual task to compare the hazard perception skills of young drivers with middle aged, more experienced drivers and to determine if these skills can be improved with video-based road commentary training. The primary task required the participants to detect and verbally identify immediate hazard on video-based traffic scenarios while concurrently performing a secondary tracking task, simulating the steering of real driving. The results showed that the young drivers perceived fewer immediate hazards (mean = 75.2%, n = 24, 19 females) than the more experienced drivers (mean = 87.5%, n = 8, all females), and had longer hazard perception times, but performed better in the secondary tracking task. After the road commentary training, the mean percentage of hazards detected and identified by the young drivers improved to the level of the experienced drivers and was significantly higher than that of an age and driving experience matched control group. The results will be discussed in the context of psychological theories of hazard perception and in relation to road commentary as an evidence-based training intervention that seems to improve many aspects of unsafe driving behaviour in young drivers.
Resumo:
A multi-faceted study is conducted with the objective of estimating the potential fiscal savings in annoyance and sleep disturbance related health costs due to providing improved building acoustic design standards. This study uses balcony acoustic treatments in response to road traffic noise as an example. The study area is the State of Queensland in Australia, where regional road traffic noise mapping data is used in conjunction with standard dose–response curves to estimate the population exposure levels. The background and the importance of using the selected road traffic noise indicators are discussed. In order to achieve the objective, correlations between the mapping indicator (LA10 (18 hour)) and the dose response curve indicators (Lden and Lnight) are established via analysis on a large database of road traffic noise measurement data. The existing noise exposure of the study area is used to estimate the fiscal reductions in health related costs through the application of simple estimations of costs per person per year per degree of annoyance or sleep disturbance. The results demonstrate that balcony acoustic treatments may provide a significant benefit towards reducing the health related costs of road traffic noise in a community.
Resumo:
Urban road traffic noise in cities is an ongoing and increasing problem across much of the world. Consequently a large amount of effort is expended in attempts to address this problem, especially in the area of acoustic design of buildings. Acoustic design policies developed by government authorities will typically focus on required transport noise reductions through a building façade to meet a specified internal noise levels. The significance of balcony acoustic treatments has been highlighted in recent decades yet this area has potentially been considered less important than the need for acoustic isolation of building facades. This paper outlines recent research that has been conducted in determining the significance of balcony acoustic treatments in mitigating urban road traffic noise. It summarizes recent literature, some of which focuses on technological advances in the knowledge of balcony acoustic design and some literature discusses the overall aims and benefits of balcony acoustic design. The aim of this paper is to promote the use of balcony acoustic design as a significant element in the overall solution towards mitigating road traffic noise in modern cities.
Resumo:
Balcony acoustic treatments can mitigate the effects of community road traffic noise. To further investigate, a theoretical study into the effects of balcony acoustic treatment combinations on speech interference and transmission is conducted for various street geometries. Nine different balcony types are investigated using a combined specular and diffuse reflection computer model. Diffusion in the model is calculated using the radiosity technique. The balcony types include a standard balcony with or without a ceiling and with various combinations of parapet, ceiling absorption and ceiling shield. A total of 70 balcony and street geometrical configurations are analyzed with each balcony type, resulting in 630 scenarios. In each scenario the reverberation time, speech interference level (SIL) and speech transmission index (STI) are calculated. These indicators are compared to determine trends based on the effects of propagation path, inclusion of opposite buildings and difference with a reference position outside the balcony. The results demonstrate trends in SIL and STI with different balcony types. It is found that an acoustically treated balcony reduces speech interference. A parapet provides the largest improvement, followed by absorption on the ceiling. The largest reductions in speech interference arise when a combination of balcony acoustic treatments are applied.
Resumo:
The International Road Assessment Program (iRAP) is a not-for-profit organisation that works in partnership with governments and non-government organisations in all parts of the world to make roads safe. The iRAP Malaysia pilot study on 3,700km of road identified the potential to save 31,800 deaths and serious injuries over the next 20 years from proven engineering improvements. To help ensure the iRAP data and results are available to planners and engineers, iRAP, together with staff from the Centre for Accident Research and Road Safety – Queensland (CARRS-Q) and the Malaysian Institute of Road Safety Research (MIROS) developed a 5-day iRAP training course that covers the background, theory and practical application of iRAP protocols, with a special focus on Malaysian case studies. Funding was provided by a competitive grant from the Australian-Malaysia Institute.
Resumo:
This thesis explores how governance networks prioritise and engage with their stakeholders, by studying three exemplars of “Regional Road Group” governance networks in Queensland, Australia. In the context of managing regionally significant road works programs, stakeholder prioritisation is a complex activity which is unlikely to influence interactions with stakeholders outside of the network. However, stakeholder priority is more likely to influence stakeholder interactions within the networks themselves. Both stakeholder prioritisation and engagement are strongly influenced by the way that the networks are managed, and in particular network operating rules and continuing access to resources.
Resumo:
Employee ownership of inventions is a complex matter in modern R&D involving multiple parties with diverse interests. Presently, Australian courts are struggling to reach equitable results in light of precedent. This article examines recent Australian, American and English decisions that attempt to balance the variables equitably for insights into potential Australian reform.
Resumo:
Objective: Comprehensive, accurate information about road crashes and related trauma is a prerequisite for identification and control of risk factors as well as for identifying faults within the broader road safety system. Quality data and appropriate crash investigation are critical in reducing the road toll that is rapidly growing in much of the developing world, including Pakistan. This qualitative research explored the involvement of social and cultural factors (in particular, fatalism) in risky road use in Pakistan. The findings highlight a significant issue, previously unreported in the road safety literature, namely, the link between fatalistic beliefs and inaccurate reporting of road crashes. Method: Thirty interviews (one-to one) were conducted by the first author with police officers, drivers, policy makers and religious orators in three Pakistani cities. Findings: Evidence emerged of a strong link between fatalism and the under-reporting of road crashes. In many cases, crashes and related road trauma appear to go unreported because a crash is considered to be one’s fate and, therefore, beyond personal control. Fate was also implicated in the practice of reconciliation between parties after a crash without police involvement and the seeking and granting of pardon for a road death. Conclusions: These issues represent additional factors that can contribute to under-reporting of crashes and associated trauma. Together, they highlight complications involved in establishing the true cost of road trauma in a country such as Pakistan and the difficulties faced when attempting to promote scientifically-based road safety information to counteract faith-based beliefs.
Resumo:
Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, Portable Water-filled barriers (PWFB) face challenges such as large lateral displacements, tearing and breakage during impact; especially at higher speeds. This study explores the use of composite action to enhance the crashworthiness of PWFBs and enable their usage at higher speeds. Initially, energy absorption capability of water in PWFB is investigated. Then, composite action of the PWFB with the introduction of steel frame is considered to evaluate its enhanced impact performance. Findings of the study show that the initial height of the impact must be lower than the free surface level of water in a PWFB in order for the water to provide significant crash energy absorption. In general, an impact of a road barrier with 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacements and sloshing response. Information from this research will aid in the design of new generation roadside safety structures aimed to increase safety in modern roadways.
Resumo:
The research study discussed in the paper investigated the adsorption/desorption behaviour of heavy metals commonly deposited on urban road surfaces, namely, Zn, Cu, Cr and Pb for different particle size ranges of solids. The study outcomes, based on field studies and batch experiments confirmed that road deposited solids particles contain a significantly high amount of vacant charge sites with the potential to adsorb additional heavy metals. Kinetic studies and adsorption experiments indicated that Cr is the most preferred metal element to associate with solids due to the relatively high electro negativity and high charge density of trivalent cation (Cr3+). However, the relatively low availability of Cr in the urban road environment could influence this behaviour. Comparing total adsorbed metals present in solids particles, it was found that Zn has the highest capacity for adsorption to solids. Desorption experiments confirmed that a low concentration of Cu, Cr and Pb in solids was present in water-soluble and exchangeable form, whilst a significant fraction of adsorbed Zn has a high likelihood of being released back into solution. Among heavy metals, Zn is considered to be the most commonly available metal among road surface pollutants.
Resumo:
Critical road infrastructure (such as tunnels and overpasses) is of major significance to society and constitutes major components of interdependent, ‘systems and networks’. Failure in critical components of these wide area infrastructure systems can often result in cascading disturbances with secondary and tertiary impacts - some of which may become initiating sources of failure in their own right, triggering further systems failures across wider networks. Perrow1) considered the impact of our increasing use of technology in high-risk fields, analysing the implications on everyday life and argued that designers of these types of infrastructure systems cannot predict every possible failure scenario nor create perfect contingency plans for operators. Challenges exist for transport system operators in the conceptualisation and implementation of response and subsequent recovery planning for significant events. Disturbances can vary from reduced traffic flow causing traffic congestion throughout the local road network(s) and subsequent possible loss of income to businesses and industry to a major incident causing loss of life or complete loss of an asset. Many organisations and institutions, despite increasing recognition of the effects of crisis events, are not adequately prepared to manage crises2). It is argued that operators of land transport infrastructure are in a similar category of readiness given the recent instances of failures in road tunnels. These unexpected infrastructure failures, and their ultimately identified causes, suggest there is significant room for improvement. As a result, risk profiles for road transport systems are often complex due to the human behaviours and the inter-mix of technical and organisational components and the managerial coverage needed for the socio-technical components and the physical infrastructure. In this sense, the span of managerial oversight may require new approaches to asset management that combines the notion of risk and continuity management. This paper examines challenges in the planning of response and recovery practices of owner/operators of transport systems (above and below ground) in Australia covering: • Ageing or established infrastructure; and • New-build infrastructure. With reference to relevant international contexts this paper seeks to suggest options for enhancing the planning and practice for crisis response in these transport networks and as a result support the resilience of Critical Infrastructure.