1000 resultados para retrograde memory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prefrontal cortex (PFC) has a central role in working memory (WM). Resistance to distraction is considered a fundamental feature of WM and PFC neuronal activity. However, although unexpected stimuli often disrupt our work, little is known about the un

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Behavioral stress can either block or facilitate memory and affect the induction of long-term potentiation (LTP) and long-term depression (LTD). However, the relevance of the stress experience-dependent long-term depression (SLTD) to spatial memory task is unknown. Here we have investigated the effects of acute and sub-acute elevated platform (EP) and foot shock (FS) stress on LTD induction in CA1 region of the hippocampus of anesthetized rats and spatial memory in Morris water maze. We found that LTD was facilitated by acute EP stress, but not by sub-acute EP stress that may be due to the fast adaptation of the animals to this naturalistic mild stress. However, FS stress, an inadaptable strong stress, facilitated LTD induction both in acute and sub-acute treatment. In addition, with the same stress protocols, acute EP stress impaired spatial memory but the sub-acute EP stressed animals performed the spatial memory task as well as the controls, may due to the same reason of adaptation. However, acute FS stress slightly impaired learning but sub-acute FS even enhanced memory retrieval. Our results showed that SLTD was disassociated with the effect of stress on memory task but might be related to stress experience-dependent form of aberrant memory. (C) 2003 Elsevier Science Ireland Ltd. and the Japan Neuroscience Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Navigated transcranial magnetic stimulation (TMS) combined with diffusion-weighted magnetic resonance imaging (DW-MRI) and tractography allows investigating functional anatomy of the human brain with high precision. Here we demonstrate that working memory (WM) processing of tactile temporal information is facilitated by delivering a single TMS pulse to the middle frontal gyrus (MFG) during memory maintenance. Facilitation was obtained only with a TMS pulse applied to a location of the MFG with anatomical connectivity to the primary somatosensory cortex (S1). TMS improved tactile WM also when distractive tactile stimuli interfered with memory maintenance. Moreover, TMS to the same MFG site attenuated somatosensory evoked responses (SEPs). The results suggest that the TMS-induced memory improvement is explained by increased top-down suppression of interfering sensory processing in S1 via the MFG-S1 link. These results demonstrate an anatomical and functional network that is involved in maintenance of tactile temporal WM. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous observations in clinical and preclinical studies indicate that the developing brain is particular sensitive to lead (Pb)'s pernicious effects. However, the effect of gestation-only Pb exposure on cognitive functions at maturation has not been studied. We investigated the potential effects of three levels of Pb exposure (low, middle, and high Pb: 0.03%, 0.09%, and 0.27% of lead acetate-containing diets) at the gestational period on the spatial memory of young adult offspring by Morris water maze spatial learning and fixed location/visible platform tasks. Our results revealed that three levels of Pb exposure significantly impaired memory retrieval in male offspring, but only female offspring at low levels of Pb exposure showed impairment of memory retrieval. These impairments were not due to the gross disturbances in motor performance and in vision because these animals performed the fixed location/visible platform task as well as controls, indicating that the specific aspects of spatial learning/memory were impaired. These results suggest that exposure to Pb during the gestational period is sufficient to cause long-term learning/memory deficits in young adult offspring. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress in early life is believed to cause cognitive and affective disorders, and to disrupt hippocampal synaptic plasticity in adolescence into adult, but it is unclear whether exposure to enriched environment (EE) can overcome these effects. Here, we rep

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to chronic constant light (CCL) influences circadian rhythms and evokes stress. Since hippocampus is sensitive to stress, which facilitates long-term depression (LTD) in the hippocampal CA1 area, we examined whether CCL exposure influenced hippoc

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Central serotonin (5-HT) dysregulation contributes to the susceptibility for mental disorders, including depression, anxiety, and posttraumatic stress disorder, and learning and memory deficits. We report that the formation of hippocampus-dependent spatia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous Studies have demonstrated that in the pentylenetetrazol (PTZ) kindling model, recurrent seizures either impair or have no effect on learning and memory. However, the effects of brief seizures on learning and memory remain unknown. Here, we found

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traumatic events always lead to aversive emotional memory, i.e., fear memory. In contrast, positive events in daily life such as sex experiences seem to reduce aversive memory after aversive events. Thus, we hypothesized that post-traumatic pleasurable ex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic exposure to opiates impairs hippocampal long-term potentiation (LTP) and spatial memory, but the underlying mechanisms remain to be elucidated. Given the well known effects of adenosine, an important neuromodulator, on hippocampal neuronal excitability and synaptic plasticity, we investigated the potential effect of changes in adenosine concentrations on chronic morphine treatment-induced impairment of hippocampal CA1 LTP and spatial memory. We found that chronic treatment in mice with either increasing doses (20-100 mg/kg) of morphine for 7 d or equal daily dose (20 mg/kg) of morphine for 12 d led to a significant increase of hippocampal extracellular adenosine concentrations. Importantly, we found that accumulated adenosine contributed to the inhibition of the hippocampal CA1 LTP and impairment of spatial memory retrieval measured in the Morris water maze. Adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine significantly reversed chronic morphine-induced impairment of hippocampal CA1 LTP and spatial memory. Likewise, adenosine deaminase, which converts adenosine into the inactive metabolite inosine, restored impaired hippocampal CA1 LTP. We further found that adenosine accumulation was attributable to the alteration of adenosine uptake but not adenosine metabolisms. Bidirectional nucleoside transporters (ENT2) appeared to play a key role in the reduction of adenosine uptake. Changes in PKC-alpha/beta activity were correlated with the attenuation of the ENT2 function in the short-term (2 h) but not in the long-term (7 d) period after the termination of morphine treatment. This study reveals a potential mechanism by which chronic exposure to morphine leads to impairment of both hippocampal LTP and spatial memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very low doses (0.00001 mg/kg) of the alpha-2 adrenergic antagonist, yohimbine, improved working memory performance in a subset of aged monkeys. Improvement appeared to result from increased norepinephrine (NE) release onto postsynaptic alpha-2 adrenoceptors, as the response was blocked by the ''postsynaptic'' alpha-2 antagonist, SKF104078. Cognitive-enhancing effects of low dose yohimbine treatment may depend on aged animals retaining an intact, endogenous NE system. In contrast to yohimbine, the alpha-2 agonist, clonidine, has improved working memory in air aged animals examined. In the present study, clonidine's beneficial effects were also blocked by the postsynaptic antagonists SKF104078 and SKF104856, suggesting that clonidine acts by directly stimulating postsynaptic alpha-2 adrenoceptors. Beneficial doses of clonidine (0.01 mg/kg) and yohimbine (0.00001 mg/kg) were combined to see if they would produce additive effects on memory enhancement. This strategy was successful in young monkeys with intact NE systems but was not effective in the aged monkeys. These findings demonstrate that drugs that indirectly stimulate postsynaptic alpha-2 receptors by increasing NE release are not as reliable in aged monkeys as directly acting agonists that can replace NE at postsynaptic alpha-2 receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeated daily treatment with the catecholamine-depleting agent, reserpine, dramatically reduced performance on the delayed response task, a test of spatial working memory that depends upon the integrity of the prefrontal cortex. Delayed response performance fell from an average of 27.2/30 trials correct before reserpine treatment to an average of 20.4/30 trials correct after repeated reserpine administration. Injection of the alpha2-adrenergic agonist, clonidine (0.0001-0.05 mg/kg), to chronic reserpine-treated monkeys significantly restored performance on the delayed response task; performance after an optimal dose averaged 27.8/30 trials correct. Clonidine's beneficial effects on delayed response performance were longlasting; monkeys remained improved for more than 24 h after a single clonidine injection. The finding that clonidine is efficacious in reserpinized animals supports the hypothesis that alpha2-adrenergic agonists improve cognitive function through actions at postsynaptic, alpha2-adrenergic receptors on non-adrenergic cells. In contrast to the delayed response task, reserpine had little effect on performance of a visual discrimination task, a reference memory task which does not depend on the prefrontal cortex. These results emphasize the importance of postsynaptic alpha2-adrenergic mechanisms in the regulation of working memory,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The D2 dopamine (DA) receptor agonist, quinpirole, was characterized in young adult monkeys, young reserpine-treated monkeys and aged monkeys to assess the contribution of DA to age-related loss of prefrontal cortical (PFC) cognitive function, Monkeys were tested on a delayed response memory task that depends on the PFC, and a fine motor task that taps the functions of the motor cortex, In young adult monkeys, low quinpirole doses impaired performance of the PFC and fine motor tasks, while higher doses improved memory performance and induced dyskinesias and ''hallucinatory-like'' behaviors. The pattern of the quinpirole response in reserpine-treated monkeys suggested that the impairments in delayed response and fine motor performance resulted from drug actions at D2 autoreceptors, while the improvement in delayed response performance, dyskinesias and ''hallucinatory-like'' behaviors resulted from actions at postsynaptic receptors. In aged monkeys, low doses of quinpirole continued to impair fine motor performance, but lost their ability to impair delayed response performance. The magnitude of cognitive improvement and the incidence of ''hallucinatory-like'' behaviors were also reduced in the aged animals, suggesting some loss of postsynaptic D2 receptor function, The pattern of results is consistent with the greater loss of DA from the PFC than from motor areas in aged monkey brain (Goldman-Rakic and Brown, 1981; Wenk et al., 1989), and indicates that DA depletion contributes significantly to age-related cognitive decline.