873 resultados para resistance to antimicrobials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlocking the resistance to wheat lipid transfer protein

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased summer drought will exacerbate the regeneration of many tree species at their lower latitudinal and altitudinal distribution limits. In vulnerable habitats, introduction of more drought-tolerant provenances or species is currently considered to accelerate tree species migration and facilitate forest persistence. Trade-offs between drought adaptation and growth plasticity might, however, limit the effectiveness of assisted migration, especially if introductions focus on provenances or species from different climatic regions. We tested in a common garden experiment the performance of Pinus sylvestris seedlings from the continental Central Alps under increased temperatures and extended spring and/or summer drought, and compared seedling emergence, survival and biomass allocation to that of P. sylvestris and closely related Pinus nigra from a Mediterranean seed source. Soil heating had only minor effects on seedling performance but high spring precipitation doubled the number of continental P. sylvestris seedlings present after the summer drought. At the same time, twice as many seedlings of the Mediterranean than the continental P. sylvestris provenance were present, which was due to both higher emergence and lower mortality under dry conditions. Both P. sylvestris provenances allocated similar amounts of biomass to roots when grown under low summer precipitation. Mediterranean seedlings, however, revealed lower phenotypic plasticity than continental seedlings under high precipitation, which might limit their competitive ability in continental Alpine forests in non-drought years. By contrast, high variability in the response of individual seedlings to summer drought indicates the potential of continental P. sylvestris provenances to adapt to changing environmental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant mitogen-activated protein kinase (MAPK) casca des transduce environmental molecular signals and developmental cues into cellular responses. Among these signals are the pathogen-associated molecular patterns (PAMPs) that upon recognition by plant pattern recognition receptors (PRR), including Receptor-Like Kinases (RLKs), activate MAPK cascades that regulate PAMP-triggered immunity responses (PTI).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell wall is a dynamic structure that regulates both constitutive and inducible plant defence responses. Different molecules o DAMPs (damage-associated molecular patterns) can be released from plant cell walls upon pathogen infection or wounding and can trigger immune responses. To further characterize the function of cell wall on the regulation of these immune responses, we have performed a biased resistance screening of putative/well-characterized primary/secondary Arabidopsis thaliana cell wall mutants (cwm). In this screening we have identified more than 20 cwm mutants with altered susceptibility/resistance to at least one of the following pathogens: the necrotrophic fungi Plectosphaerella cucumerina, the vascular bacterium Ralstonia solanacearum, the biotrophic oomycete Hyaloperonospora arabidopsidis and the powdery mildew fungus Erisyphe cruciferarum. We found that cell wall extracts from some of these cwm plants contain novel DAMPs that activate immune responses and conferred enhanced resistance to particular pathogens when they were applied to wild-type plants. Using glycomic profiling we have performed an initial characterization of the active carbohydrate structures present in these cwm wall fractions, and we have determined the signalling pathways regulated by thesse fractions. . The data generated with this collection of wall mutants support the existence of specific correlations between cell wall structure/composition, resistance to particular type of pathogens and plant fitness. Remarkably, we have identified specific cwm mutations that uncoupled resistance to pathogens from plant trade-offs, further indicating the plasticity of wall structures in the regulation of plant immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal transduction through the leukocyte integrins is required for the processes of firm adhesion, activation, and chemotaxis of neutrophils during inflammatory reactions. Neutrophils isolated from knockout mice that are deficient in the expression of p59/61hck (Hck) and p58c-fgr (Fgr), members of the Src-family of protein tyrosine kinases, have been shown to be defective in adhesion mediated activation. Cells from these animals have impaired induction of respiratory burst and granule secretion following plating on surfaces that crosslink β2 and β3 integrins. To determine if the defective function of hck−/−fgr−/− neutrophils observed in vitro also results in impaired inflammatory responses in vivo, we examined responses induced by lipopolysaccharide (LPS) injection in these animals. The hck−/−fgr−/− mice showed marked resistance to the lethal effects of high-dose LPS injection despite the fact that high levels of serum tumor necrosis factor α and interleukin 1α were detected. Serum chemistry analysis revealed a marked reduction in liver and renal damage in mutant mice treated with LPS, whereas blood counts showed a marked neutrophilia that was not seen in wild-type animals. Direct examination of liver sections from mutant mice revealed reduced neutrophil migration into the tissue. These data demonstrate that defective integrin signaling in neutrophils, caused by loss of Hck and Fgr tyrosine kinase activity, results in impaired inflammation-dependent tissue injury in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophages are considered to be the mediators of resistance to extra-intestinal Salmonella infections. Nevertheless, the initial cellular response to Salmonella infections consists primarily of polymorphonuclear leukocytes (PMN). To determine whether PMN serve an important function for the infected host, we made mice neutropenic with the rat mAb to RB6–8C5 and infected them i.v. with ≈103 Salmonella dublin or an isogenic derivative that lacks the virulence plasmid (LD842). We infected BALB/c mice, which have a point mutation in the macrophage-expressed gene Nramp1 that makes them susceptible to Salmonella, and BALB/c.D2 congenic mice, which have the wild-type Nramp1 gene that makes them resistant to Salmonella. Both mouse strains were resistant to LD842, and neutropenia made only the BALB/c strain susceptible to this infection. Neutropenic congenic mice, however, were susceptible only to wild-type S. dublin (plasmid+). These results show a complex interplay between plasmid-virulence genes in Salmonella, host macrophages, and PMN. Mice with normal macrophages need PMN to defend against nontyphoid Salmonella that carry a virulence plasmid but not against Salmonella without virulence plasmids. Mice with a mutant Nramp1 gene need PMN to defend against all Salmonella, even those that lack virulence plasmids. These results, plus the evidence that PMN kill Salmonella efficiently in vitro, suggest that Salmonella have adapted to grow inside macrophages where they are relatively sheltered from PMN. The adaptations that allow Salmonella to survive in macrophages do not protect them from PMN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA fragmentation factor 45 (DFF45) is a subunit of a heterodimeric nuclease complex critical for the induction of DNA fragmentation in vitro. To understand the in vivo role of DFF45 in programmed cell death, we generated DFF45 mutant mice. DNA fragmentation activity is completely abolished in cell extracts from DFF45 mutant tissues. In response to apoptotic stimuli, splenocytes, thymocytes, and granulocytes from DFF45 mutant mice are resistant to DNA fragmentation, and splenocytes and thymocytes are also resistant to chromatin condensation. Nevertheless, development of the immune system in the DFF45 mutant mice is normal. These results demonstrate that DFF45 is critical for the induction of DNA fragmentation and chromatin condensation in vivo, but is not required for normal immune system development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the efficacy of a hairpin ribozyme targeting the 5′ leader sequence of HIV-1 RNA in a transgenic model system. Primary spleen cells derived from transgenic or control mice were infected with HIV-1/MuLV pseudotype virus. A significantly reduced susceptibility to infection in ribozyme-expressing transgenic spleen cells (P = 0.01) was shown. Variation of transgene-expression levels between littermates revealed a dose response between ribozyme expression and viral resistance, with an estimated cut off value below 0.2 copies of hairpin ribozyme per cell. These findings open up possibilities for studies on ribozyme efficacy and anti-HIV-1 gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal hematopoietic stem cell disorder resulting from mutations in an X-linked gene, PIG-A, that encodes an enzyme required for the first step in the biosynthesis of glycosylphosphatidylinositol (GPI) anchors. PIG-A mutations result in absent or decreased cell surface expression of all GPI-anchored proteins. Although many of the clinical manifestations (e.g., hemolytic anemia) of the disease can be explained by a deficiency of GPI-anchored complement regulatory proteins such as CD59 and CD55, it is unclear why the PNH clone dominates hematopoiesis and why it is prone to evolve into acute leukemia. We found that PIG-A mutations confer a survival advantage by making cells relatively resistant to apoptotic death. When placed in serum-free medium, granulocytes and affected CD34+ (CD59−) cells from PNH patients survived longer than their normal counterparts. PNH cells were also relatively resistant to apoptosis induced by ionizing irradiation. Replacement of the normal PIG-A gene in PNH cell lines reversed the cellular resistance to apoptosis. Inhibited apoptosis resulting from PIG-A mutations appears to be the principle mechanism by which PNH cells maintain a growth advantage over normal progenitors and could play a role in the propensity of this disease to transform into more aggressive hematologic disorders. These data also suggest that GPI anchors are important in regulating apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two isoforms of the substance P (SP) receptor, differing in the length of the cytoplasmic carboxyl-terminus by ≈8 kDa, have been detected previously in rat salivary glands and other tissues. The binding and functional properties of these two isoforms have been investigated using full-length (407 amino acids) and carboxyl-terminally truncated (324 amino acids) rat SP receptors transfected stably into Chinese hamster ovary cells. Both the full-length and the truncated receptor bound radiolabeled SP with a similar Kd (≈0.1 nM). The average number of high affinity SP binding sites per cell was 1.0 × 105 and 0.3 × 105 for the full-length and the truncated SP receptor, respectively. In both cell lines, SP induced a rapid but transient increase in cytosolic calcium concentration ([Ca2+]i), which consisted of the release of Ca2+ from intracellular stores and the influx of extracellular Ca2+. Both components are dependent on phospholipase C activation. Although the full-length and the truncated receptor utilize the same calcium pathways, they differ in their EC50 values (0.28 nM for the full-length; 0.07 nM for the truncated). These differences in responsiveness may be related to the observed differences in receptor desensitization. The truncated receptor, in contrast to the full-length receptor, does not undergo rapid and long-lasting desensitization. Cells possessing the short isoform of the SP receptor would thus be expected to exhibit a prolonged responsiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The VanC phenotype for clinical resistance of enterococci to vancomycin is exhibited by Enterococcus gallinarum and Enterococcus casseliflavus. Based on the detection of the cell precursor UDP-N-acetylmuramic acid pentapeptide intermediate terminating in d-Ala-d-Ser instead of d-Ala-d-Ala, it has been predicted that the VanC ligase would be a d-Ala-d-Ser rather than a d-Ala-d-Ala ligase. Overproduction of the E. casseliflavus ATCC 25788 vanC2 gene in Escherichia coli and its purification to homogeneity allowed demonstration of ATP-dependent d-Ala-d-Ser ligase activity. The kcat/Km2 (Km2 = Km for d-Ser or C-terminal d-Ala) ratio for d-Ala-d-Ser/d-Ala-d-Ala dipeptide formation is 270/0.69 for a 400-fold selection against d-Ala in the C-terminal position. VanC2 also has substantial d-Ala-d-Asn ligase activity (kcat/Km2 = 74 mM−1min−1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss of functional p53 paradoxically results in either increased or decreased resistance to chemotherapeutic drugs. The inconsistent relationship between p53 status and drug sensitivity may reflect p53’s selective regulation of genes important to cytotoxic response of chemotherapeutic agents. We reasoned that the discrepant effects of p53 on chemotherapeutic cytotoxicity is due to p53-dependent regulation of the multidrug resistance gene (MDR1) expression in tumors that normally express MDR1. To test the hypothesis that wild-type p53 regulates the endogenous mdr1 gene we stably introduced a trans-dominant negative (TDN) p53 into rodent H35 hepatoma cells that express P-glycoprotein (Pgp) and have wild-type p53. Levels of Pgp and mdr1a mRNA were markedly elevated in cells expressing TDN p53 and were linked to impaired p53 function (both transactivation and transrepression) in these cells. Enhanced mdr1a gene expression in the TDN p53 cells was not secondary to mdr1 gene amplification and Pgp was functional as demonstrated by the decreased uptake of vinblastine. Cytotoxicity assays revealed that the TDN p53 cell lines were selectively insensitive to Pgp substrates. Sensitivity was restored by the Pgp inhibitor reserpine, demonstrating that only drug retention was the basis for loss of drug sensitivity. Similar findings were evident in human LS180 colon carcinoma cells engineered to overexpress TDN p53. Therefore, the p53 inactivation seen in cancers likely leads to selective resistance to chemotherapeutic agents because of up-regulation of MDR1 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site–leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) are becoming a cornerstone of ecologically sound pest management. However, if pests quickly adapt, the benefits of environmentally benign Bt toxins in sprays and genetically engineered crops will be short-lived. The diamondback moth (Plutella xylostella) is the first insect to evolve resistance to Bt in open-field populations. Here we report that populations from Hawaii and Pennsylvania share a genetic locus at which a recessive mutation associated with reduced toxin binding confers extremely high resistance to four Bt toxins. In contrast, resistance in a population from the Philippines shows multilocus control, a narrower spectrum, and for some Bt toxins, inheritance that is not recessive and not associated with reduced binding. The observed variation in the genetic and biochemical basis of resistance to Bt, which is unlike patterns documented for some synthetic insecticides, profoundly affects the choice of strategies for combating resistance.