943 resultados para refractory lining
Resumo:
A novel line-order of InAs quantum dots (QDs) along the [1, 1, 0] direction on GaAs substrate has been prepared by self-organized growth. After 2.5 monolayer InAs deposition, QDs in the first layer of multi-layer samples started to gather in a line. Owing to the action of strong stress between layers, almost all the dots of the fourth layer gathered in lines. The dots lining up tightly are actually one-dimensional superlattice of QDs, of which the density of electronic states is different from that of isolated QDs or quantum wires. The photoluminescence spectra of our multi-layer QD sample exhibited a feature of very broad band so that it is suitable for the active medium of super luminescent diode. The reason of dots lining up is attributed to the hill-and-valley structure of the buffer, anisotropy and different diffusion rates in the different directions on the buffer and strong stress between QD layers. (C) 2002 Published by Elsevier Science B. V.
Resumo:
We have investigated the hydride vapor-phase epitaxy growth of (10 (1) over bar(3) over bar)-oriented GaN thick films on patterned sapphire substrates (PSSs) (10 (1) over bar0). From characterization by atomic force microscopy, scanning electron microscopy, double-crystal X-ray diffraction, and photoluminescence (PL), it is determined that the crystalline and optical qualities of (10 (1) over bar(3) over bar) GaN epilayers grown on the cylindrical PSS are better than those on the flat sapphire. However, two main crystalline orientations (10 (1) over bar(3) over bar) and (11 (2) over bar2) dominate the GaN epilayers grown on the pyramidal PSS, demonstrating poor quality. After etching in the mixed acids, these (10 (1) over bar(3) over bar) GaN films are dotted with oblique pyramids, concurrently lining along the < 30 (3) over bar2 > direction, indicative of a typical N-polarity characteristic. Defect-related optical transitions of the (10 (1) over bar(3) over bar) GaN epilayers are identified and detailedly discussed in virtue of the temperature-dependent PL. In particular, an anomalous blueshift-redshift transition appears with an increase in temperature for the broad blue luminescence due to the thermal activation of the shallow level.
Resumo:
单宁是一种典型的有毒难降解污染物,在制革、造纸、制药、印染等行业废水中广泛存在,对水环境造成污染并且影响废水生物处理效果。本研究针对含单宁废水生物处理效率低、较高浓度时微生物受抑制且污泥容易膨胀等问题,采用超声和磁粉来强化含单宁废水生物处理,研究超声和磁粉对微生物活性、污染物去除及污泥沉降性能的影响,并对其作用机理进行了分析和探讨。 研究结果表明,活性污泥系统中单宁酸容积负荷可以达到1.8kgCOD/(m3·d),单宁酸和COD去除率分别达到85.2%和79.6%,但如果负荷进一步增大则微生物活性迅速降低。系统在pH 5~8、温度20~35℃、DO>1 mg/L的条件下具有较好的单宁酸降解效果和处理稳定性。单宁降解动力学参数为:μmax =0.208h-1;Ks=226mg/L;Ki=522mg/L;kd=0.0092h-1;Y =0.594。 磁粉对系统处理效果和污泥沉降性能有一定的促进作用,且效果要优于外磁场。适宜的磁粉粒径和投加量分别为0.05~0.15mm和1.0g/L,COD去除率比对照系统提高6.4%,SVI降低28.6%,污泥絮体结构紧密。磁粉强化主要是通过其对污泥菌胶团的凝聚、吸附作用以及对微生物活性的强化作用实现。 在适当强度(0.4W/cm2)和辐照时间(20min)的超声作用下污泥絮体和细胞膜通透性增大,酶分泌也增多,系统的COD去除率比对照提高了8.8%,单宁酶酶活提高了11%。但超声也使污泥絮体结构松散,沉降性能下降,SVI比对照系统升高9.3%。 由于污泥流失加剧导致污泥浓度相对较低,声磁联合强化系统相对于磁粉强化系统其处理效果并没有提高。但相对于单纯活性污泥系统,声磁联合作用下系统处理效果、污泥沉降性能以及系统运行稳定性都得到明显改善。本研究为难降解废水的生物处理提供了一个新的思路。 Tannins are typical refractory and toxic pollutants that commonly exist in wastewater from dye, medicine, paper and leather industries and cause many problems associated with environmental pollution and biological treatment of wastewater. Biological treatment efficiency of tannin-containing wastewater is usually low owing to its biological toxicity and low biodegradability, microbes are usually inhibited under high tannin concentration and sludge bulking frequently occurs. In this study, ultrasound and magnetic powder were used to improve the biological treatment performance of simulated tannic acid-containing wastewater. The effects of ultrasonic irradiation and magnetic powder on microbial activity, tannic acid degradation rate and sludge sedimentation were investigated. The augmentation mechanisms were analyzed and discussed. The experimental results showed that the microbes were prominently inhibited under high tannic acid concentration, but moderate degradation efficiency can be maintained under a tannic acid load of up to 1.8kgCOD/(m3·d), with the tannic acid degradation and COD removal percentage of 85.2% and 79.6% respectively. The highest degradation rates and treatment stability were achieved at pH range of 5~8, temperature range of 20~35℃ and DO concentration of above 1mg/L. The kinetic parameters were estimated, including: μmax =0.208h-1;Ks=226mg/L;Ki=522mg/L;kd=0.0092h-1;Y =0.594. The microbial activity, tannic acid degradation rate and sludge sedimentation were improved by adding Fe3O4 magnetic powder, and the augmentation performance was better than external magnetic field. The appropriate particle size and dosage of magnetic powder were found to be 0.05~0.15mm and 1.0g/L, respectively, under which the COD removal percentage was improved by 6.4% and SVI value decreased by 28.6%, and compact floc structure was observed. This was mainly caused by the flocculation and adsorption effects of magnetic powder against sludge floc and the stimulation of microbial activity under appropriate magnetic field. Under appropriate ultrasonic irradiation (ultrasonic intensity 0.4W/cm2, ultrasonic irradiation time 20min), the permeability of floc and cell membrane are improved, transfer of substrate and oxygen were reinforced; meanwhile, more enzyme were produced by microbes under the slight damage caused by ultrasound. However, the floc structure became loose under ultrasonic irradiation, leading to relatively poor sedimentation, with the SVI value 9.3% higher than the control system. Although the magnetic powder-ultrasonic irradiation combined augmentation system showed no improvement in treatment performance compared with sole magnetic augmentation system owing to its relatively low sludge concentration, it guaranteed the stable operation of system, meanwhile the tannic acid degradation and sludge sedimentation were significantly improved compared with sole activated sludge system. This study gives a new idea for biological treatment of refractory wastewater.
Resumo:
垃圾卫生填埋是国内外城市垃圾的主要处置方法。垃圾渗滤液是渗入填埋场垃圾的降水混合垃圾降解过程中产生的物质而形成的混合物,是垃圾填埋场向环境排放的主要污染物。渗滤液由于其所含高浓度有机和无机污染物,且其中很多物质有生物毒性或难生物降解,难于治理。特别是到填埋晚期,渗滤液中高浓度的氨氮更是增加了治理的难度。渗滤液场外硝化-原位反硝化是填埋场氮管理的新途径。本文利用从环境中筛选出优势硝化功能菌对渗滤液中的高浓度氨氮进行生物硝化,经硝化后的渗滤液回灌至以垃圾柱模拟的生物反应器填埋场,在填埋场内实现原位反硝化。 上述目标通过以下两部分来实现: 第一部分:渗滤液场外硝化。首先从污水厂的硝化污泥中富集并筛选出硝化功能菌,在模拟氨氮废水中优化。将驯化的硝化功能菌接种于连续式完全混合反应器(CSTR)进行高氨氮渗滤液硝化研究。在200余天的连续运行中,反应器硝化和有机物去除效果良好。在最大氨氮负荷和有机物负荷分别为0.65 g N l-1 d-1 和3.84 g COD l-1 d-1时,氨氮和COD去除率分别高于99%和57%。实验过程中发现,游离氨(FA)和溶解氧(DO)浓度对反应器中亚硝酸盐的积累影响很大。 第二部分:渗滤液原位反硝化。本文利用一个垃圾填充柱模拟生物反应器填埋场,研究了硝化渗滤液回灌对垃圾降解的影响,和回灌的硝化渗滤液中TON(总氧化态氮)对填埋场生物反应器产甲烷作用的影响。最后利用变性梯度凝胶电泳(DGGE)分析了硝化渗滤液回灌对垃圾填埋场菌群结构的影响。结果表明:回灌的TON被完全还原,反硝化为主要反应,最大TON负荷为28.6 mg N kg-1 TS d-1。当垃圾柱TON负荷大于11.4 mg N kg-1 TS d-1时,出现了产甲烷抑制,抑制作用随TON负荷的增加而加强。在此过程中,反硝化逐渐代替产甲烷作用成为填埋场内垃圾降解的主要反应,且更多产生的是清洁的氮气,而非温室气体甲烷。直到实验结束时,回灌硝化渗滤液的垃圾柱的甲烷产量仅相当于对照的2.5%,并且回灌的硝化渗滤液还加速了填埋场垃圾的降解与稳定。通过DGGE进行菌群结构分析发现,由于TON对填埋场的长期作用,反硝化菌增多而产甲烷菌减少。 Landfill still remains the chief method for MSW management around the world. Leachate is a mixture of rainfall permeating through landfill and organic and inorganic matters generated during decomposition of the wastes in the landfills, characterized as highly complicated and refractory wastewater. Ex-situ nitrification and sequential in-situ denitrification represents a novel approach to nitrogen management at landfills. In the present paper, nitrification was carried out in a continuous stirred tank reactor (CSTR) inoculated with nitrifying bacteria which were isolated from municipal WWTP of Chengdu city. The nitrified leachate from CSTR was recirculated to a lab-scale municipal solid waste (MSW) column where in-situ denitrification took place. The above object was achived through two parts as following: First, ex-situ nitification of leachate. After acclimated in simulated wastewater for 3 month, nitrifying bacteria isolated from WWTP nitrifying sludge were added to the CSTR for nitrification. The results over 200 days showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l-1 d-1 and 3.84 g COD l-1 d-1, respectively. The ammonia and COD removal was over 99% and 57%, respectively. Moreover, the effects of free ammonia (FA) and dissolved oxygen (DO) on nitrification were investigated. Second, in-situ denitrification was studied in a municipal solid waste (MSW) column. Variation of nitrified leachate and its effects on the decomposition of municipal solid waste (MSW) were studied in a lab-scale MSW column to which nitrified leachate was recirculated. Additionally, DGGE was employed to investigate the microbial community of both MSW columns. The results suggested: complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON load of 28.6 mg N kg-1 TS d-1 and denitrification was the main reaction responsible. Methanogenesis inhibition was observed while TON load was over 11.4 mg N kg-1 TS d-1 and the inhibition was enhanced with the increase of TON load. Denitrification gradually took over methanogenesis to become the main reaction responsible for decomposition of MSW while nitrogen gas, a clean byproduct, was generated instead. Till the end of the experiment, the average weekly methane production in the denitrification column was as low as 2.5% of that of the control, and the rate of decompition and stability of MSW was accelerated by the recirculation of the nitrified leachate.Owing to long term exposure of nitrified leachate to landfill, denitrifying bacteria increased and methanogen decreased.
Resumo:
DNA double-strand breaks (DSBs) are the most deleterious lesion inflicted by ionizing radiation. Although DSBs are potentially carcinogenic, it is not clear whether complex DSBs that are refractory to repair are more potently tumorigenic compared with simple breaks that can be rapidly repaired, correctly or incorrectly, by mammalian cells. We previously demonstrated that complex DSBs induced by high-linear energy transfer (LET) Fe ions are repaired slowly and incompletely, whereas those induced by low-LET gamma rays are repaired efficiently by mammalian cells. To determine whether Fe-induced DSBs are more potently tumorigenic than gamma ray-induced breaks, we irradiated 'sensitized' murine astrocytes that were deficient in Ink4a and Arf tumor suppressors and injected the surviving cells subcutaneously into nude mice. Using this model system, we find that Fe ions are potently tumorigenic, generating tumors with significantly higher frequency and shorter latency compared with tumors generated by gamma rays. Tumor formation by Fe-irradiated cells is accompanied by rampant genomic instability and multiple genomic changes, the most interesting of which is loss of the p15/Ink4b tumor suppressor due to deletion of a chromosomal region harboring the CDKN2A and CDKN2B loci. The additional loss of p15/Ink4b in tumors derived from cells that are already deficient in p16/Ink4a bolsters the hypothesis that p15 plays an important role in tumor suppression, especially in the absence of p16. Indeed, we find that reexpression of p15 in tumor-derived cells significantly attenuates the tumorigenic potential of these cells, indicating that p15 loss may be a critical event in tumorigenesis triggered by complex DSBs.
Resumo:
Novel cemented carbides (W0.4Al0.6)C-0.5-Co With different cobalt contents were prepared by mechanical alloying and hot-pressing technique. Hot-pressing technique as a common technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have good mechanical properties compared with WC-Co. The density and operation cost of the novel material were much lower than the WC-Co system. It was easy to process submicroscale sintering with the novel materials and obtain the rounded particles in the bulk materials. There is almost no eta-phase in the (W0.4Al0.6)C-0.5-CO cemented carbides system although the carbon deficient obtains the astonishing value of 50%.
Resumo:
Bulk novel cemented carbides (W1-xAlx)C-10.1 vol% Co (x = 0.2, 0.33, 0.4, 0.5) are prepared by mechanical alloying and hot-pressing sintering. Hot-pressing (HP) is used to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have good mechanical properties compared with WC-Co. The density and operating cost of the novel material is much lower than a WC-Co system. The material is easy to process and the processing leads to nano-scaled, rounded, particles in the bulk material. The hardness of (W1-xAlx)C-10.1 vol% Co (x = 0.2, 0.33, 0.4, 0.5) hard material is 20.37, 21.16, 21.59 and 22.16 GPa, and the bending strength is 1257, 1238, 1211 and 1293 MPa, with the aluminum content varying from 20% to 50%. The relationship between the microstructure and the mechanical properties of the novel hard alloy is also discussed.
Resumo:
A novel hard material of (W0.5Al0.5)C-0.5 has been successfully sintered under high-pressure (4.5 GPa). The influence of sintering time and temperature on the microstructure, Vickers microhardness and density of the as-prepared specimens are well described. Interestingly, sintering temperature has an amazing influence on the hardness, density and microstructure of the specimen while the sintering time does not. It is found that the most suitable sintering condition from our work is 1600 degrees C and 10 min under pressure of 4.5 GPa. The hardness and relative density of the as-prepared sample can reach 2340 kg mm(-2) and 98.62%, respectively. The cell parameters of the sintered specimen is found to be little smaller than that of the powder, which we propose is related to the high pressure.
Resumo:
Modal composition and mineral composition of harzburgites from the southern Mariana fore-arc show that they are highly refractory. There are a few modals of clinopyroxene (0.7 vol %) in harzburgites. Two types of amphibole are found in these harzburgites: magnesiohornblende accompanied by clinopyroxene with higher Al2O3 content (> 7%) and lower Mg-#; tremolite around orthopyroxene with lower Al2O3 content (< 2%) and higher Mg-#. Trace element of clinopyroxene and two types of amphibole are analyzed. Primitive mantle-normalised REE patterns for clinopyroxene and magnesio hornblende are very similar and both show HREE enrichment relative to LREE, while magnesiohornblende has higher content of trace element than clinopyroxene. The contents of trace element of tremolite are much lower than those of magnesiohornblende. Clinopyroxene shows enrichment of most of the trace element except HREE and Ti relative to clinopyroxene in abyssal peridotites. Petrology and trace element characteristic of clinopyroxene and two types of amphibole indicate that southern Mariana fore-arc harzburgites underwent two stages of metasomatism. The percolation of a hydrous melt led to mobility of Al, Ca, Fe, Mg, Na, and large amounts of trace element. LILE and LREE can be more active in hydrous melt than HREE and Ti, and the activities of most of the trace element except some of LILE are influenced by temperature and pressure.
Resumo:
The distribution of dissolved organic nitrogen (DON) and nitrate were determined seasonally (winter, spring and summer) during three years along line P, i.e. an E-W transect from the coast of British Columbia, Canada, to Station P (50degreesN, 145degreesW) in the subarctic North East Pacific Ocean. In conjunction, DON measurements were made in the Straits of Juan de Fuca and Georgia within an estuarine system connected to the NE Pacific Ocean. The distribution of DON at the surface showed higher values of 4-17 muM in the Straits relative to values of 4-10 muM encountered along line P, respectively. Along line P, the concentration of DON showed an inshore-offshore gradient at the surface with higher values near the coast. The equation for the conservation of DON showed that horizontal transport of DON (inshore-offshore) was much larger than vertical physical mixing. Horizontal advection of DON-rich waters from the coastal estuarine system to the NE Pacific Ocean was likely the cause of the inshore-offshore gradient in the concentration of DON. Although the concentration of DON was very variable in space and time, it increased from winter to summer, with an average build up of 4.3 muM in the Straits and 0.7 muM in the NE subarctic Pacific. This implied seasonal DON sources of 0.3 mmol N m(-2) d(-1) at Station P and 1.5 mmol N m(-2) d(-1) in the Straits, respectively. These seasonal DON accumulation rates corresponded to about 15-20% of the seasonal nitrate uptake and suggested that there was a small seasonal build up of labile DON at the surface. However, the long residence times of 180-1560 d indicated that the most of the DON pool in surface waters was refractory in two very different productivity regimes of the NE Pacific. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The occurrence of Late Cretaceous mafic dykes and their entrained peridotite and granulite xenoliths as well as clinopyroxene xenocrysts in the Qingdao region provide us a precious opportunity to unveil the nature and characteristics of the Late Mesozoic lithospheric mantle and lower crust beneath the Jiaodong region, and the change of the magma sources. These studies are of important and significant for understanding the lithospheric evolution in the eastern North China Craton. There were two periods of magma activities in Late Mesozoic in Qingdao Laoshan region, one was around 107Ma in the Early Cretaceous and the other around 86Ma in the Late Cretaceous according to the whole rock K-Ar age determination. The Early Cretaceous mafic dykes and the Late Cretaceous mafic dyke (i.e. Pishikou mafic dike) have completely different geochemical characteristics. The Early Cretaceous mafic dykes are enriched in LILE, strongly depleted in HFSE (Nb, Ta, Zr, Hf) and characterized by the highly radiogenic Sr and Nd isotopic compositions. These geochemical features indicate that the Early Cretaceous mafic dykes were derived from an enriched lithospheric mantle. In contrast, the Late Cretaceous mafic dyke is enriched in LILE, without HFSE depletion (Nb, Ta, Zr, Hf) and has less radiogenic Nd and Sr isotopic compositions. These geochemical features indicate that the Late Cretaceous mafic dyke was derived from the asthenosphere modified by subducted pelagic sediment contamination. The intrusive age of the Late Cretaceous mafic dyke provides further information for the termination of the lithosphere thinning for the eastern North China Crtaon. Pishikou Late Cretaceous mafic dyke contains abundant peridotitic xenoliths, granulite xenoliths and clinopyroxene xenocrysts. The peridotitic xenoliths can be divided into two types: high Mg# peridotites and low Mg# peridotites, according to their textural and mineral features. The high-Mg# peridotites have high Fo (up to 92.2) olivines and high Cr# (up to 55) spinels. The clinopyroxenes in the high# peridotites are rich in Cr2O3 and poor in Al2O3. The low-Mg# peridotites are typified by low Mg# (Fo <90) in olivines and low Cr# (Cr# <0.14) in spinels. The clinopyroxenes in the low-Mg# peridotites are rich in Al2O3 and Na2O and poor in Cr2O3. These two type peridotites have similar equilibrated temperatures of 950C-1100C. The Clinopyroxenes in the high-Mg# peridotites generally have high and variable REE contents (REE = 5.6-84 ppm) and LREE-enriched chondrite-normalized patterns ((La/Yb)N>1). In contrast, the clinopyroxenes in the low-Mg# peridotites have low REE contents (REE = 12 ppm) and LREE-depleted patterns ((La/Yb)N<1). The textural, mineral and elemental features of the low-Mg# peridotites are similar to those of the low-Mg peridotites from the Junan, representing the newly-accreted lithospheric mantle. However, the mineralogical and petrological features of the high-Mg# peridotites are similar to those of the high-Mg# peridotites from the Junan region, representing samples from the old refractory lithospheric mantle that was strongly and multiply affected by melts of different origins Late Cretaceous mafic dike in the Qingdao region also contains two types of granulite xenoliths according to the mineral constituents: the pyroxene-rich granulites and the plagioclase-rich granulites. Equilibrated temperatures calculated from the cpx-opx geothermometers are in a range of 861C - 910C for the pyroxene-rich granulites and of 847C - 890C for the plagioclase-rich granulites. The equilibrated pressure for the plagioclase-rich granulites is in a range of 9.9-11.7 kbar. Combined with the results of the peridotitic xenoliths, a 40C temperature gap exists between the peridotite and the granulite. The petrological Moho was 33~36 km at depths, broadly consistent with the seismic Moho estimated from the geophysical data. This indicates that there was no obvious crust-mantle transition zone in the Qingdao region in the Late Mesozoic. Pishikou Late Cretaceous mafic dyke entrained lots of clinopyroxene xenocrysts which are characterized by the chemical zoning. According to the zoning features, two types of clinopyroxene xenoliths can be classified, the normal zoning and the revise zoning. The normally-zoned clinopyroxene xenocrysts have LREE-depleted REE patterns in the cores. In contrast, the revisely-zoned clinopyroxenes have LREE-enriched REE patterns in the cores. According to the rim and core compositions of xenocrysts, all the rims are balanced with the host magma. Meanwhile, the origins of the cores were complicated, in which the normally-zoned clinopyroxenes were derived form the lithospheric mantle and some of the reversely-zoned clinopyroxnes were originated from the lower crust. Other revisely-zoned clinopyroxenes had experienced complex geological evolution and need to be further investigated. According to the above results, a simplified lithospheric profile has been established beneath the Qingdao region and a constraint on the nature and characteristics of the lithospheric mantle and lower crust has been made.
Resumo:
Western Qinling, a conjunction region of the North China Craton, the Yangtze Craton and the Tibetan Plateau, has very complicated history of geologic and tectonic evolution. Previous studies mainly focus on tectonics and petrology of volcanic rocks in the western Qinling. Therefore, little is known about the Cenozoic lithospheric mantle beneath the western Qinling. Mafic, ultramafic and/or alkaline volcanic rocks and their entrained mantle peridotitic xenoliths and xenocrysts are known as samples directly from the lithospheric mantle. Their petrological and geochemical characteristics can reflect the nature and deep processes of the lithospheric mantle. Cenozoic volcanic rocks in the western Qinling contain abundant mantle xenoliths and xenocrysts, which provide us an opportunity to probe the lithospheric mantle beneath this region and a new dimension to insight into geologic evolution. Cenozoic volcanic rocks (7-23 Ma) from the western Qinling are sparsely distributed in the Lixian-Dangchang-Xihe Counties, Gansu Province, China. Volcanic rocks contain plenty of mantle-derived xenoliths, including spinel lherzolites with subordinate wehrlite, dunite, olivine websterite, clinopyroxenite and garnet lherzolite, and few olivine, clinopyroxene and spinel xenocrysts. These peridotitic xenoliths show clear deformed textures and their major minerals show excellent orientation. Thus, these peridotites are typical deformed peridotites. Olivine xenocrysts have clearly-zoned textures. The peridotitic xenoliths can be divided into two groups based on their compositions, namely, the H-type and L-type. The H-type peridotites are characterized by high Fo (>90) in olivines in which fine-grained ones have higher Fo than the coarse grains, low CaO (<20 %) in clinopyroxenes, high Cr# (>40) in spinels and high equilibration temperatures. They may represent the refractory lithospheric mantle. In contrast, the L-type peridotites contain low Fo (<90) olivines (with lower Fo in fine-grained olivines), high CaO (>20 %) clinopyroxenes, low Cr# (<20) spinels and low equilibration temperatures. They experienced low degree of partial melting. The Cenozoic lithospheric mantle beneath the western Qinling was refractory in major element compositions based on the mineral compositions of xenoliths and xenocrysts and experienced complicated deep processes. The lithospheric mantle was modified by shear deformation due to the diapirism of asthenosphere and strong tectonic movements including the collision between North China Craton and Yangze Craton and the uplift of Tibetan Plateau, and then underwent metasomatism with a hydrous, Na, Ti and Cr enriched melt.
Resumo:
In recent years, thanks to the improvement of analytical methods and the use of MC-ICP-MS, Fe isotope can be measured precisely. Fe isotope shows considerable variation both in biological and inorganic processes (from low T to high T) in nature, Therefore, Fe isotope has become one of the exciting frontier sciences and has favorable prospects of the application to the geosciences and life sciences. Based on a comprehensive review of available references in the related field, this study focuses on the development of techniques for high-precision measurement of iron isotope using MC-ICP-MS, and application of the techniques developed to study the Fe isotopes as well as major and trace element compositions of minerals (Ol, Opx, Cpx and Sp) from spinel peridotitic xenoliths from Cenozoic alkaline basalts to investigate Fe isotopic features of the lithospheric mantle beneath the North China Craton. The minerals from these xenoliths are similar to those off-cratonic peridotites world-wide, but are remarkably different from those on-cratonic peridotites and clinopyroxenes from these spinel lherzolites exhibit two types of chondrite-normalized REE patterns i.e. LREE-depleted and flat or spoon-shaped. It is noted that total abundances of REE in clinopyroxenes from these peridotites show a broad negative correlation with Cr# numbers of Cpx and Sp. The Fe isotope results show that the spinel peridotitic xenoliths have small but distinguishable Fe isotopic variations in minerals (generally Ol < Opx < Cpx) and samples, and the isotopic range in spinel is relatively large. Positive linear relationship with the ε57Fecpx/ε57Feopx ratio close to one unit has been observed between Fe isotopes of coexistent Opx and Cpx, indicating that the Cpx and Opx have generally reached Fe isotopic equilibrium. However, Fe isotopes between the Ol and Sp show apparent disequilibrium. The broadly negative correlation between mineral Fe isotopes and oxygen fugacity (fo2), metasomatic indexes such as spinel Cr#, (La/Yb) N and (La/Sm) N ratios of clinopyroxenes suggest that Fe isotopic variations in different minerals and peridotites were probably produced by melt-peridotite interaction. This study further confirms the previous observation that the lithospheric mantle has distinguishable and heterogeneous Fe isotopic variations at a scale of xenoliths. Mantle metasomatism that induces the interaction of the lithospheric mantle peridotite with metasomatic agent is a most potential mechanism for the Fe isotope fractionation in mantle peridotites. Therefore, Fe isotope could be a new and powerful tool to probe the evolution of the lithospheric mantle. We also report mineral compositions, clinopyroxene trace element concentrations and Sr-Nd isotopes for newly-discovered phlogopite-bearing spinel lherzolite and olivine clinopyroxenite xenoliths from three different localities (Hannuoba, Hebei Province; Jining Sangyitang, Inner Mongolia; Hebi, Henan Province)of the North China Craton. Systematic comparisons with phlogopite-free spinel lherzolite xenolith from the same locality reveals that the phlogopite-bearing peridotitic xenoliths have relatively higher Al2O3, CaO, Na2O, K2O, TiO2 contents and lower MgO contents than those phogopite-free counterparts. The former also has higher LREE concentrations, but relatively less radiogenic Sr-Nd isotopic ratios. This demonstrates that mantle metasomatism can not only enrich the basaltic components and trace element concentrations, but also make a decrease in Mg# of the peridotites and olivines and a relative depletion in Sr-Nd isotopes. 87Rb/86Sr-87Sr/86Sr isochrons of the phlogopite-bearing xenoliths indicate that mantle metasomatism happened in the Mesozoic and/or Cenozoic time. The metasomatic agent was derived from the asthenosphere. The result also manifests that the widespread similarity of the geochemical features such as major and trace elements and isotopic compositions in the Cenozoic lithospheric mantle beneath the North China Craton to those “oceanic” lithospheric mantle could be as a result of the ubiquitous presence of the interaction between the old refractory peridotites and the infiltrated asthenospheric melt, rather than the actually newly-accreted lithospheric mantle.