970 resultados para quartz monzonite
The combined use of reflectance, emissivity and elevation Aster/Terra data for tropical soil studies
Resumo:
Reflectance, emissivity and elevation data of the sensor ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)/Terra were used to characterize soil composition variations according to the toposequence position. Normalized data of SWIR (shortwave infrared) reflectance and TIR (thermal infrared) emissivity, coupled to a soil-fraction image from a spectral mixture model, were evaluated to separate bare soils from nonphotosynthetic vegetation. Regression relationships of some soil properties with reflectance and emissivity data were then applied on the exposed soil pixels. The resulting estimated values were plotted on the ASTER-derived digital elevation model. Results showed that the SWIR bands 5 and 6 and the TIR bands 10 and 14 measured the clay mineral absorption band and the quartz emissivity feature, respectively. These bands improved also the discrimination between nonphotosynthetic vegetation and soils. Despite the differences in pixel size and field sampling size, some soil properties were correlated with reflectance (R² of 0.65 for Al2O3 in band 6; 0.61 for Fe2O3 in band 3) and emissivity (R² of 0.65 for total sand fraction in the 10/14 band ratio). The combined use of reflectance, emissivity and elevation data revealed variations in soil composition with topography in specific parts of the landscape. From higher to lower slope positions, a general decrease in Al2O3 and increase in total sand fraction was observed, due to the prevalence of Rhodic Acrustox at the top and its gradual transition to Typic Acrustox at the bottom.
Resumo:
Peatlands are ecosystems formed by successive pedogenetic processes, resulting in progressive accumulation of plant remains in the soil column under conditions that inhibit the activity of most microbial decomposers. In Diamantina, state of Minas Gerais, Brazil, a peatland is located at 1366 m asl, in a region with a quartz-rich lithology and characteristic wet grassland vegetation. For this study, the peat area was divided in 12 transects, from which a total of 90 soil samples were collected at a distance of 20 m from each other. The properties rubbed fiber content (RF), bulk density (Bd), mineral material (MM), organic matter (OM), moisture (Moi) and maximum water holding capacity (MWHC) were analyzed in all samples. From three selected profiles of this whole area, samples were collected every 27 cm from the soil surface down to a depth of 216 cm. In these samples, moisture was additionally determined at a pressure of 10 kPa (Moi10) or 1500 kPa (Moi1500), using Richards' extractor and soil organic matter was fractionated by standard procedures. The OM decomposition stage of this peat was found to increase with soil depth. Moi and MWHC were highest in layers with less advanced stages of OM decomposition. The humin levels were highest in layers in earlier stages of OM decomposition and with higher levels of water retention at MWHC and Moi10. Humic acid contents were higher in layers at an intermediate stage of decomposition of organic matter and with lowest levels of water retention at MWHC, Moi10 and Moi1500.
Resumo:
One of the main problems faced by humanity is pollution caused by residues resulting from the production and use of goods, e.g, sewage sludge. Among the various alternatives for its disposal, the agricultural use seems promising. The purpose of this study was to evaluate the hydraulic conductivity and interaction of soil with sandy-silty texture, classified as Spodosols, from the Experimental Station Itapirema - IPA, in Goiana, state of Pernambuco, in mixtures with sewage sludge from the Mangueira Sewage Treatment Station, in the city of Recife, Pernambuco at rates of 25, 50 and 75 Mg ha-1. Tests were conducted to let water percolate the natural saturated soil and soil-sludge mixtures to characterize their physical, chemical, and microstructural properties as well as hydraulic conductivity. Statistical data analysis showed that the presence of sewage sludge in soils leads to an increase of the < 0.005 mm fraction, reduction in real specific weight and variation in optimum moisture content from 11.60 to 12.90 % and apparent specific dry weight from 17.10 and 17.50 kN m-3. In the sludge-soil mixture, the quartz grains were covered by sludge and filling of the empty soil macropores between grains. There were changes in the chemical characteristics of soil and effluent due to sewage sludge addition and a small decrease in hydraulic conductivity. The results indicate the possibility that soil acidity influenced the concentrations of the elements found in the leachate, showing higher levels at higher sludge doses. It can be concluded that the leaching degree of potentially toxic elements from the sewage sludge treatments does not harm the environment.
Resumo:
Among the soils in the Mato Grosso do Sul, stand out in the Pantanal biome, the Spodosols. Despite being recorded in considerable extensions, few studies aiming to characterize and classify these soils were performed. The purpose of this study was to characterize and classify soils in three areas of two physiographic types in the Taquari river basin: bay and flooded fields. Two trenches were opened in the bay area (P1 and P2) and two in the flooded field (P3 and P4). The third area (saline) with high sodium levels was sampled for further studies. In the soils in both areas the sand fraction was predominant and the texture from sand to sandy loam, with the main constituent quartz. In the bay area, the soil organic carbon in the surface layer (P1) was (OC) > 80 g kg-1, being diagnosed as Histic epipedon. In the other profiles the surface horizons had low OC levels which, associated with other properties, classified them as Ochric epipedons. In the soils of the bay area (P1 and P2), the pH ranged from 5.0 to 7.5, associated with dominance of Ca2+ and Mg2+, with base saturation above 50 % in some horizons. In the flooded fields (P3 and P4) the soil pH ranged from 4.9 to 5.9, H+ contents were high in the surface horizons (0.8-10.5 cmol c kg-1 ), Ca2+ and Mg² contents ranged from 0.4 to 0.8 cmol c kg-1 and base saturation was < 50 %. In the soils of the bay area (P1 and P2) iron was accumulated (extracted by dithionite - Fed) and OC in the spodic horizon; in the P3 and P4 soils only Fed was accumulated (in the subsurface layers). According to the criteria adopted by the Brazilian System of Soil Classification (SiBCS) at the subgroup level, the soils were classified as: P1: Organic Hydromorphic Ferrohumiluvic Spodosol. P2: Typical Orthic Ferrohumiluvic Spodosol. P3: Typical Hydromorphic Ferroluvic Spodosol. P4: Arenic Orthic Ferroluvic Spodosol.
Resumo:
Large areas of Plinthosols with ferruginous materials such as plinthite and/or petroplinthite are fairly common in the Brazilian Amazon basin. This work was carried out to investigate the chemical behavior, mineralogical composition and weathering stage of four representative soil profiles with plinthite and petroplinthite, in Iranduba, AM (Central Amazon). Three well-drained soil profiles at high elevations were studied (P1, Plinthic Vetic Ferralsol; P2 and P3, Vetic Endopetric Plinthosol) and a contrasting poorly drained soil (P4 Haplic Plinthosol), located at low elevation. After profile descriptions, soil samples were collected from each horizon, air-dried, sieved (2 mm), and analyzed for particle-size distribution, pH, exchangeable cations (Al3+, Ca2+, Mg2+, K+, and Na+), as well as available P and total organic carbon (TOC) content. The minerals present in the clay and sand fractions, as well as in the ferruginous materials were identified by X-ray Diffraction (XRD). The weathering stage of these soils was assessed by means of Ki and Kr indexes, and the amounts of free and amorphous Fe and Al oxides by using dithionite citrate bicarbonate (DBC) and ammonium oxalate dissolution procedures, respectively. The results showed that all soils were extremely unfertile, with pH levels ranging between strong and moderate acidity, very low sum of bases and organic matter content, and of available P. The mineralogy of the soil profiles was very similar, mainly of the well-drained soils, with predominance of kaolinite and quartz in the clay and sand fractions, respectively. In the poorly-drained P4, 2:1 clay particles were also observed. These profiles can be considered highly developed according to the Ki index, however, the Ki value of P4 was higher, indicating that this soil was less developed than the others. In summary, these profiles with plinthite and petroplinthite can be characterized as highly developed and infertile soils and are, with exception of P4, well-drained.
Resumo:
Quartz-carbonate-chlorite veins were studied in borehole samples of the RWTH-1 well in Aachen. Veins formed in Devonian rocks in the footwall of the Aachen thrust during Variscan deformation and associated fluid flow. Primary fluid inclusions indicate subsolvus unmixing of a homogenous H(2)O-CO(2)-CH(4)-(N(2))-Na-(K)-Cl fluid into a H(2)O-Na-(K)-Cl solution and a vapour-rich CO(2)-(H(2)O, CH(4), N(2)) fluid. The aqueous end-member composition resembles that of metamorphic fluids of the Variscan front zone with salinities ranging from 4 to 7% NaCl equiv. and maximum homogenisation temperatures of close to 400A degrees C. Pressure estimates indicate a burial depth between 4,500 and 8,000 m at geothermal gradients between 50 and 75A degrees C/26 MPa, but pressure decrease to sublithostatic conditions is also indicated, probably as a consequence of fracture opening during episodic seismic activity. A second fluid system, mainly preserved in pseudo-secondary and secondary fluid inclusions, is characterised by fluid temperatures between 200 and 250A degrees C and salinities of < 5% NaCl equiv. Bulk stable isotope analyses of fluids released from vein quartz, calcite, and dolomite by decrepitation yielded delta D(H2O) values from -89 to -113 aEuro degrees, delta(13)C(CH4) from -26.9 to -28.9aEuro degrees (VPDB) and delta(13)C(CO2) from -12.8 to -23.3aEuro degrees (VPDB). The low delta D and delta(13)C range of the fluids is considered to be due to interaction with cracked hydrocarbons. The second fluid influx caused partial isotope exchange and disequilibrium. It is envisaged that an initial short lived flux of hot metamorphic fluids expelled from the epizonal metamorphic domains of the Stavelot-Venn massif. The metamorphic fluid was focused along major thrust faults of the Variscan front zone such as the Aachen thrust. A second fluid influx was introduced from formation waters in the footwall of the Aachen thrust as a consequence of progressive deformation. Mixing of the cooler and lower salinity formation water with the hot metamorphic fluid during episodic fluid trapping resulted in an evolving range of physicochemical fluid inclusion characteristics.
Resumo:
The end of an orogenic Wilson cycle corresponds to amalgamation of terranes into a Pangaea and is marked by widespread magmatism dominated by granitoids. The post-collision event starts with magmatic processes still influenced by subducted crustal materials. The dominantly calc-alkaline suites show a shift from normal to high-K to very high-K associations. Source regions are composed of depleted and later enriched orogenic subcontinental lithospheric mantle, affected by dehydration melting and generating more and more K- and LILE-rich magmas. In the vicinity of intra-crustal magma chambers, anatexis by incongruent melting of hydrous minerals may generate peraluminous granitoids bearing mafic enclaves. The post-collision event ends with emplacement of bimodal post-orogenic (PO) suites along transcurrent fault zones. Two suites are defined, (i) the alkali-calcic monzonite-monzogranite-syenogranite-alkali feldspar granite association characterised by [biotite + plagioclase] fractionation and moderate [LILE + HFSE] enrichments and (ii) the alkaline monzonite-syenite-alkali feldspar granite association characterised by [amphibole + alkali feldspar] fractionation and displaying two evolutionary trends, one peralkaline with sodic mafic mineralogy and higher enrichments in HFSE than in LILE, and the other aluminous biotite-bearing marked by HFSE depletion relative to LILE due to accessory mineral precipitation. Alkali-calcic and alkaline suites differ essentially in the amounts of water present within intra-crustal magma chambers, promoting crystallisation of various mineral assemblages. The ultimate enriched and not depleted mantle source is identical for the two PO suites. The more primitive LILE and HFSE-rich source rapidly replaces the older orogenic mantle source during lithosphere delamination and becomes progressively the thermal boundary layer of the new lithosphere. Present rock compositions are a mixture of major mantle contribution and various crustal components carried by F-rich aqueous fluids circulating within convective cells created around magma chambers. In favourable areas, PO suites pre-date a new orogenic Wilson cycle. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The Jurassic (approximately 145 Ma) Nambija oxidized gold skarns are hosted by the Triassic volcanosedimentary Piuntza unit in the sub-Andean zone of southeastern Ecuador. The skarns consist dominantly of granditic garnet (Ad(20-98)) with subordinate pyroxene (Di(46-92)Hd(17-42)Jo(0-19)) and epidote and are spatially associated with porphyritic quartz-diorite to granodiorite intrusions. Endoskarn is developed at the intrusion margins and grades inwards into a potassic alteration zone. Exoskarn has an outer K- and Na-enriched zone in the volcanosedimentary unit. Gold mineralization is associated with the weakly developed retrograde alteration of the exoskarn and occurs mainly in sulfide-poor vugs and milky quartz veins and veinlets in association with hematite. Fluid inclusion data for the main part of the prograde stage indicate the coexistence of high-temperature (500A degrees C to > 600A degrees C), high-salinity (up to 65 wt.% eq. NaCl), and moderate- to low-salinity aqueous-carbonic fluids interpreted to have been trapped at pressures around 100-120 MPa, corresponding to about 4-km depth. Lower-temperature (510-300A degrees C) and moderate- to low-salinity (23-2 wt.% eq. NaCl) aqueous fluids are recorded in garnet and epidote of the end of the prograde stage. The microthermometric data (Th from 513A degrees C to 318A degrees C and salinity from 1.0 to 23 wt.% eq. NaCl) and delta(18)O values between 6.2aEuro degrees and 11.5aEuro degrees for gold-bearing milky quartz from the retrograde stage suggest that the ore-forming fluid was dominantly magmatic. Pressures during the early retrograde stage were in the range of 50-100 MPa, in line with the evidence for CO(2) effervescence and probable local boiling. The dominance of magmatic low-saline to moderately saline oxidizing fluids during the retrograde stage is consistent with the depth of the skarn system, which could have delayed the ingression of external fluids until relatively low temperatures were reached. The resulting low water-to-rock ratios explain the weak retrograde alteration and the compositional variability of chlorite, essentially controlled by host rock compositions. Gold was precipitated at this stage as a result of cooling and pH increase related to CO(2) effervescence, which both result in destabilization of gold-bearing chloride complexes. Significant ingression of external fluids took place after gold deposition only, as recorded by delta(18)O values of 0.4aEuro degrees to 6.2aEuro degrees for fluids depositing quartz (below 350A degrees C) in sulfide-rich barren veins. Low-temperature (< 300A degrees C) meteoric fluids (delta(18)O(water) between -10.0aEuro degrees and -2.0aEuro degrees) are responsible for the precipitation of late comb quartz and calcite in cavities and veins and indicate mixing with cooler fluids of higher salinities (about 100A degrees C and 25 wt.% eq. NaCl). The latter are similar to low-temperature fluids (202-74.5A degrees C) with delta(18)O values of -0.5aEuro degrees to 3.1aEuro degrees and salinities in the range of 21.1 to 17.3 wt.% eq. CaCl(2), trapped in calcite of late veins and interpreted as basinal brines. Nambija represents a deep equivalent of the oxidized gold skarn class, the presence of CO(2) in the fluids being partly a consequence of the relatively deep setting at about 4-km depth. As in other Au-bearing skarn deposits, not only the prograde stage but also the gold-precipitating retrograde stage is dominated by fluids of magmatic origin.
Resumo:
ABSTRACT The impact of intensive management practices on the sustainability of forest production depends on maintenance of soil fertility. The contribution of forest residues and nutrient cycling in this process is critical. A 16-year-old stand of Pinus taeda in a Cambissolo Húmico Alumínico léptico (Humic Endo-lithic Dystrudept) in the south of Brazil was studied. A total of 10 trees were sampled distributed in five diameter classes according to diameter at breast height. The biomass of the needles, twigs, bark, wood, and roots was measured for each tree. In addition to plant biomass, accumulated plant litter was sampled, and soil samples were taken at three increments based on sampling depth: 0.00-0.20, 0.20-0.40, 0.40-0.60, 0.60-1.00, 1.00-1.40, 1.40-1.80, and 1.80-1.90 m. The quantity and concentration of nutrients, as well as mineralogical characteristics, were determined for each soil sample. Three scenarios of harvesting intensities were simulated: wood removal (A), wood and bark removal (B), and wood + bark + canopy removal (C). The sum of all biomass components was 313 Mg ha-1.The stocks of nutrients in the trees decreased in the order N>Ca>K>S>Mg>P. The mineralogy of the Cambissolo Húmico Alumínico léptico showed the predominance of quartz sand and small traces of vermiculite in the silt fraction. Clay is the main fraction that contributes to soil weathering, due to the transformation of illite-vermiculite, releasing K. The depletion of nutrients from the soil biomass was in the order: P>S>N>K>Mg>Ca. Phosphorus and S were the most limiting in scenario A due to their low stock in the soil. In scenario B, the number of forest rotations was limited by N, K, and S. Scenario C showed the greatest reduction in productivity, allowing only two rotations before P limitation. It is therefore apparent that there may be a difference of up to 30 years in the capacity of the soil to support a scenario such as A, with a low nutrient removal, compared to scenario C, with a high nutrient removal. Hence, the effect of different harvesting intensities on nutrient availability may jeopardize the sustainability of P. taeda in the short-term.
Resumo:
La présence de fluide météorique synchrone à l'activité du détachement (Farmin, 2003 ; Mulch et al., 2007 ; Gébelin et al., 2011), implique que les zones de cisaillement sont des systèmes ouverts avec des cellules de convections à l'échelle crustale et un intense gradient géothermique au sein du détachement (Morrison et Anderson, 1998, Gottardi et al., 2011). De plus, les réactions métamorphiques liées à des infiltrations fluides dans les zones de cisaillement extensionnel peuvent influencer les paramètres rhéologiques du système (White and Knipe, 1978), et impliquer la localisation de la déformation dans la croûte. Dans ce manuscrit, deux zones de cisaillement infiltrées par des fluides météoriques sont étudiées, l'une étant largement quartzitique, et l'autre de nature granitique ; les relations entre déformation, fluides, et roches s'appuient sur des approches structurales, microstructurales, chimiques et isotopiques. L'étude du détachement du Columbia river (WA, USA) met en évidence que la déformation mylonitique se développe en un million d'années. La phase de cisaillement principal s'effectue à 365± 30°C d'après les compositions isotopiques en oxygène du quartz et de la muscovite. Ces minéraux atteignent l'équilibre isotopique lors de leur recristallisation dynamique contemporaine à la déformation. La zone de cisaillement enregistre une baisse de température, remplaçant le mécanisme de glissement par dislocation par celui de dissolution- précipitation dans les derniers stades de l'activité du détachement. La dynamique de circulation fluide bascule d'une circulation pervasive à chenalisée, ce qui engendre localement la rupture des équilibres d'échange isotopiques. La zone de cisaillement de Bitterroot (MT, USA) présente une zone mylonitique de 600m d'épaisseur, progressant des protomylonites aux ultramylonites. L'intensité de la localisation de la déformation se reflète directement sur l'hydratation des feldspaths, réaction métamorphique majeure dite de « rock softening ». Une étude sur roche totale indique des transferts de masse latéraux au sein des mylonites, et d'importantes pertes de volume dans les ultramylonites. La composition isotopique en hydrogène des phyllosilicates met en évidence la présence (1) d'une source magmatique/métamorphique originelle, caractérisée par les granodiorites ayant conservé leur foliation magmatique, jusqu'aux protomylonites, et (2) une source météorique qui tamponne les valeurs des phyllosilicates des fabriques mylonitiques jusqu'aux veines de quartz non-déformées. Les compositions isotopiques en oxygène des minéraux illustrent le tamponnement de la composition du fluide météorique par l'encaissant. Ce phénomène cesse lors du processus de chloritisation de la biotite, puisque les valeurs des chlorites sont extrêmement négatives (-10 per mil). La thermométrie isotopique indique une température d'équilibre isotopique de la granodiorite entre 600-500°C, entre 500-300°C dans les mylonites, et entre 300 et 200°C dans les fabriques cassantes (cataclasites et veines de quartz). Basé sur les résultats issus de ce travail, nous proposons un modèle général d'interactions fluide-roches-déformation dans les zones de détachements infiltrées par des fluides météoriques. Les zones de détachements évoluent rapidement (en quelques millions d'années) au travers de la transition fragile-ductile ; celle-ci étant partiellement contrôlée par l'effet thermique des circulations de fluide météoriques. Les systèmes de détachements sont des lieux où la déformation et les circulations fluides sont couplées ; évoluant rapidement vers une localisation de la déformation, et de ce fait, une exhumation efficace. - The presence of meteoric fluids synchronous with the activity of extensional detachment zones (Famin, 2004; Mulch et al., 2007; Gébelin et al., 2011) implies that extensional systems involve fluid convection at a crustal scale, which results in high geothermal gradients within active detachment zones (Morrison and Anderson, 1998, Gottardi et al., 2011). In addition, the metamorphic reactions related to fluid infiltration in extensional shear zones can influence the rheology of the system (White and Knipe, 1978) and ultimately how strain localizes in the crust. In this thesis, two shear zones that were permeated by meteoric fluids are studied, one quartzite-dominated, and the other of granitic composition; the relations between strain, fluid, and evolving rock composition are addressed using structural, microstructural, and chemical/isotopic measurements. The study of the Columbia River detachment that bounds the Kettle core complex (Washington, USA) demonstrates that the mylonitic fabrics in the 100 m thick quartzite- dominated detachment footwall developed within one million years. The main shearing stage occurred at 365 ± 30°C when oxygen isotopes of quartz and muscovite equilibrated owing to coeval deformation and dynamic recrystallization of these minerals. The detachment shear zone records a decrease in temperature, and dislocation creep during detachment shearing gave way to dissolution-precipitation and fracturing in the later stages of detachment activity. Fluid flow switched from pervasive to channelized, leading to isotopic disequilibrium between different minerals. The Bitterroot shear zone detachment (Montana, USA) developed a 600 m thick mylonite zone, with well-developed transitions from protomylonite to ultramylonite. The localization of deformation relates directly to the intensity of feldspar hydration, a major rock- softening metamorphic reaction. Bulk-rock analyses of the mylonitic series indicate lateral mass transfer in the mylonite (no volume change), and significant volume loss in ultramylonite. The hydrogen isotope composition of phyllosilicates shows (1) the presence of an initial magmatic/metamorphic source characterized by the granodiorite in which a magmatic, and gneissic (protomylonite) foliation developed, and (2) a meteoric source that buffers the values of phyllosilicates in mylonite, ultramylonite, cataclasite, and deformed and undeformed quartz veins. The mineral oxygen isotope compositions were buffered by the host-rock compositions until chloritization of biotite started; the chlorite oxygen isotope values are negative (-10 per mil). Isotope thermometry indicates a temperature of isotopic equilibrium of the granodiorite between 600-500°C, between 500-300°C in the mylonite, and between 300 and 200°C for brittle fabrics (cataclasite and quartz veins). Results from this work suggest a general model for fluid-rock-strain feedbacks in detachment systems that are permeated by meteoric fluids. Phyllosilicates have preserved in their hydrogen isotope values evidence for the interaction between rock and meteoric fluids during mylonite development. Fluid flow generates mass transfer along the tectonic anisotropy, and mylonites do not undergo significant volume change, except locally in ultramylonite zones. Hydration of detachment shear zones attends mechanical grain size reduction and enhances strain softening and localization. Self-exhuming detachment shear zones evolve rapidly (a few million years) through the transition from ductile to brittle, which is partly controlled by the thermal effect of circulating surface fluids. Detachment systems are zones in the crust where strain and fluid flow are coupled; these systems. evolve rapidly toward strain localization and therefore efficient exhumation.
Resumo:
The Petrova and Trgovska Gora Mts. (Gora=Mountain) are Variscan basement units incorporated into the northwestern Dinarides during the Alpine orogeny. They host numerous siderite-quartz-polysulphide, siderite-chalcopyrite, siderite-galena and barite veins, as well as stratabound hydrothermal-replacement ankerite bodies within carbonates in non-metamorphosed, flysch-like Permo-Carboniferous sequences. The deposits have been mined for Cu, Pb, Ag and Fe ores since Medieval times. Fluid inclusion studies of quartz from siderite-polysulphide-quartz and barite veins of both regions have shown the presence of primary aqueous NaCl-CaCl(2)+/- MgCl(2)-H(2)O +/- CO(2) inclusions. The quartz-sulphide stage of both regions show variable salinities; 2.7-26.2 wt% NaCl eq. for the Trgovska Gora region and 3.4-23.4 wt% NaCl eq. for the Petrova gora region, and similar homogenisation temperatures (100-230A degrees C). Finally, barite is precipitated from low salinity-low temperature solutions (3.7-15.8 wt % NaCl equ. and 115-145A degrees C). P-t conditions estimated via isochore construction yield formation temperatures between 180-250A degrees C for the quartz-sulphide stage and 160-180A degrees C for the barite stage, using a maximum lithostatic pressure of 1 kbar (cc. 3 km of overburden). The sulphur isotope composition of barite from both deposits indicates the involvement of Permian seawater in ore fluids. This is supported by the elevated bromium content of the fluid inclusion leachates (120-660 ppm in quartz, 420-960 ppm in barite) with respect to the seawater, indicating evaporated seawater as the major portion of the ore-forming fluids. Variable sulphur isotope compositions of galena, pyrite and chalcopyrite, between -3.2 and +2.7aEuro degrees, are interpreted as a product of incomplete thermal reduction of the Permian marine sulphate mixed with organically- and pyrite-bound sulphur from the host sedimentary rocks. Ore-forming fluids are interpreted as deep-circulating fluids derived primarily from evaporated Permian seawater and later modified by interaction with the Variscan basement rocks. (40)Ar/(39)Ar data of the detrital mica from the host rocks yielded the Variscan age overprinted by an Early Permian tectonothermal event dated at 266-274 Ma. These ages are interpreted as those reflecting hydrothermal activity correlated with an incipient intracontinental rifting in the Tethyan domain. Nevertheless, 75 Ma recorded at a fine-grained sericite sample from the alteration zone is interpreted as a result of later resetting of white mica during Campanian opening/closure of the Sava back arc in the neighbouring Sava suture zone (Ustaszewski et al. 2008).
Resumo:
We explore the timing of deformation and exhumation of the Siviez-Mischabel Nappe (western Swiss Alps), which has been considered a classic example of a midcrustal crystalline nappe since the studies of Argand [1916]. This study presents Ar-40/Ar-39 ages obtained on both synkinematic white mica from Permo-Triassic cover sediments and more complex white mica populations from basement gneisses of the Siviez-Mischabel and middle Pennine Nappes. Primary foliation developed in cover units by nucleation, growth, and rigid rotation of mica grains during noncoaxial Alpine deformation. Although some samples show a crenulation of this primary foliation, mica growth appears to have occurred only during the development of primary foliation, the main phase of greenschist facies deformation related to imbrication of the Siviez-Mischabel Nappe and other middle Pennine Nappes. Good agreement exists between independent estimates of the timing of deformation and reported Ar-40/Ar-39, white mica ages from cover units of the central and southern Siviez-Mischabel Nappe. In cover units from the central and southern Siviez-Mischabel regions of the study area, Ar-40/Ar-39 ages appear to date synkinematic white mica growth. Results suggest that the Siviez-Mischabel :Nappe was emplaced and developed foliation during a 5 m.y. period from 41 to 36 Ma. In cover units from the eastern Siviez-Mischabel, however, Ar-40/Ar-39 white mica ages appear to date postkinematic thermal events. These thermal events may be related to Oligocene magmatic activity in the lower Pennine Nappes or to Miocene development of the Simplon fault zone. Variations in the relation between Alpine age and grain size for cover samples from the central, eastern, and southern Siviez-Mischabel correlate well with the regional variations in temperature inferred from quartz microfabrics and the pattern of regional metamorphism. When considered in concert with other recent isotopic studies on the timing of major tectonic and thermal events in the western Swiss Alps, these data support arguments that the relative timing of events such as thrusting and back thrusting of crystalline nappes in hinterland units and exhumation of high-pressure units in the suture zone of the western Alps are intimately related and synchronous on the scale of a few million years. Copyright 1998 by the American Geophysical Union.
Resumo:
Peak metamorphic temperatures for the coesite-pyrope-bearing whiteschists from the Dora Maira Massif, western Alps were determined with oxygen isotope thermometry. The deltaO-18(SMOW) values of the quartz (after coesite) (delta O-18 = 8.1 to 8.6 parts per thousand, n = 6), phengite (6.2 to 6.4 parts per thousand, n = 3), kyanite (6.1 parts per thousand, n = 2), garnet (5.5 to 5.8 parts per thousand, n = 9), ellenbergerite (6.3 parts per thousand, n = 1) and rutile (3.3. to 3.6 parts per thousand, n = 3) reflect isotopic equilibrium. Temperature estimates based on quartz-garnet-rutile fractionation are 700-750-degrees-C. Minimum pressures are 31-32 kb based on the pressure-sensitive reaction pyrope + coesite = kyanite + enstatite. In order to stabilize pyrope and coesite by the temperature-sensitive dehydration reaction talc + kyanite = pyrope + coesite + H2O, the a(H2O) must be reduced to 0.4-0.75 at 700 750-degrees-C. The reduced a(H2O) cannot be due to dilution by CO2, as pyrope is not stable at X (CO2) > 0.02 (T = 750-degrees-C; P = 30 kb). In the absence of a more exotic fluid diluent (e.g. CH4 or N2), a melt phase is required. Granite solidus temperatures are approximately 680-degrees-C/30 kb at a(H2O) = 1.0 and are calculated to be approximately 70-degrees-C higher at a(H2O) = 0.7, consistent with this hypothesis. Kyanite-jadeite-quartz bands may represent a relict melt phase. Peak P-T-f(H2O) estimates for the whiteschist are 34 +/- 2 kb, 700-750-degrees-C and 0.4-0.75. The oxygen isotope fractionation between quartz (deltaO-18 = 11.6%.) and garnet (deltaO-18 = 8.7 parts per thousand) in the surrounding orthognesiss is identical to that in the coesite-bearing unit, suggesting that the two units shared a common, final metamorphic history. Hydrogen isotope measurements were made on primary talc and phengite (deltaD(smow) = -27 to -32 parts per thousand), on secondary talc and chlorite after pyrope (deltaD = - 39 to - 44 parts per thousand) and on the surrounding biotite (deltaD = -64 parts per thousand) and phengite (deltaD = -44 parts per thousand) gneiss. All phases appear to be in near-equilibrium. The very high deltaD values for the primary hydrous phases is consistent with an initial oceanic-derived/connate fluid source. The fluid source for the retrograde talc + chlorite after pyrope may be fluids evolved locally during retrograde melt crystallization. The similar deltaD, but dissimilar deltaO-18 values of the coesite-bearing whiteschists and hosting orthogneiss suggest that the two were in hydrogen isotope equilibrium, but not oxygen isotope equilibrium. The unusual hydrogen and oxygen isotope compositions of the coesite-bearing unit can be explained as the result of metasomatism from slab-derived fluids at depth.
Resumo:
The Gronnedal-Ika complex is dominated by layered nepheline syenites which were intruded by a xenolithic syenite and a central plug of calcite to calcite-siderite carbonatite. Aegirine-augite, alkali feldspar and nepheline are the major mineral phases in the syenites, along with rare calcite. Temperatures of 680-910degreesC and silica activities of 0.28-0.43 were determined for the crystallization of the syenites on the basis of mineral equilibria. Oxygen fugacities, estimated using titanomagnetite compositions, were between 2 and 5 log units above the fayalite-magnetite-quartz buffer during the magmatic stage. Chondrite-normalized REE patterns of magmatic calcite in both carbonatites and syenites are characterized by REE enrichment (La-CN-Yb-CN = 10-70). Calcite from the carbonatites has higher Ba (similar to5490 ppm) and lower HREE concentrations than calcite from the syenites (54-106 ppm Ba). This is consistent with the behavior of these elements during separation of immiscible silicate-carbonate liquid pairs. epsilon(Nd)(T = 1.30 Ga) values of clinopyroxenes from the syenites vary between +1.8 and +2.8, and epsilon(Nd)(T) values of whole-rock carbonatites range from +2.4 to +2.8. Calcite from the carbonatites has delta(18)O values of 7.8 to 8.6parts per thousand and delta(13)C values of -3.9 to -4.6parts per thousand. delta(18)O values of clinopyroxene separates from the nepheline syenites range between 4.2 and 4.9parts per thousand. The average oxygen isotopic composition of the nepheline syenitic melt was calculated based on known rock-water and mineral-water isotope fractionation to be 5.7 +/- 0.4parts per thousand. Nd and C-O isotope compositions are typical for mantle-derived rocks and do not indicate significant crustal assimilation for either syenite or carbonatite magmas. The difference in delta(18)O between calculated syenitic melts and carbonatites, and the overlap in epsilon(Nd) values between carbonatites and syenites, are consistent with derivation of the carbonatites from the syenites via liquid immiscibility.
Resumo:
The Oligocene deposits of Montgat are integrated in a small outcrop made up of Cenozoic and Mesozoic rocks located in the Garraf-Montnegre horst, close to the major Barcelona fault. The Oligocene of Montgat consists of detrital sediments of continental origin mainly deposited in alluvial fan environments; these deposits are folded and affected by thrusts and strike-slip faults. They can be divided in two lithostratigraphic units separated by a minor southwest-directed thrust: (i) the Turó de Montgat Unit composed of litharenites and lithorudites with high contents of quartz, feldspar, plutonic and limestone rock fragments; and (ii) the Pla de la Concòrdia Unit composed of calcilitharenites and calcilithorudites with high contents of dolosparite and dolomicrite rock fragments. The petrological composition of both units indicates that sediments were derived from the erosion of Triassic (Buntsandstein, Muschelkalk and Keuper facies), Jurassic and Lower Cretaceous rocks (Barremian to Aptian in age). Stratigraphic and petrological data suggest that these units correspond to two coalescent alluvial fans with a source area located northwestwards in the adjoining Collserola and Montnegre inner areas. Micromammal fossils (Archaeomys sp.) found in a mudstone layer of the Pla de la Concòrdia Unit assign a Chattian age (Late Oligocene) to the studied materials. Thus, the Montgat deposits are the youngest dated deposits affected by the contractional deformation that led to the development of the Catalan Intraplate Chain. Taking into account that the oldest syn-rift deposits in the Catalan Coastal Ranges are Aquitanian in age, this allows to precise that the change from a compressive to an extensional regime in this area took place during latest Oligocene-earliest Aquitanian times. This age indicates that the onset of crustal extension related to the opening of the western Mediterranean Basin started in southern France during latest Eocene-early Oligocene and propagated southwestward, affecting the Catalan Coastal Ranges and the northeastern part of the Valencia trough during the latest Chattian-earliest Aquitanian times.