871 resultados para propositional linear-time temporal logic
Resumo:
Investigating the variability of Agulhas leakage, the volume transport of water from the Indian Ocean to the South Atlantic Ocean, is highly relevant due to its potential contribution to the Atlantic Meridional Overturning Circulation as well as the global circulation of heat and salt and hence global climate. Quantifying Agulhas leakage is challenging due to the non-linear nature of this process; current observations are insufficient to estimate its variability and ocean models all have biases in this region, even at high resolution . An Eulerian threshold integration method is developed to examine the mechanisms of Agulhas leakage variability in six ocean model simulations of varying resolution. This intercomparison, based on the circulation and thermo- haline structure at the Good Hope line, a transect to the south west of the southern tip of Africa, is used to identify features that are robust regardless of the model used and takes into account the thermohaline biases of each model. When determined by a passive tracer method, 60 % of the magnitude of Agulhas leakage is captured and more than 80 % of its temporal fluctuations, suggesting that the method is appropriate for investigating the variability of Agulhas leakage. In all simulations but one, the major driver of variability is associated with mesoscale features passing through the section. High resolution (<1/10 deg.) hindcast models agree on the temporal (2–4 cycles per year) and spatial (300–500 km) scales of these features corresponding to observed Agulhas Rings. Coarser resolution models (<1/4 deg.) reproduce similar time scale of variability of Agulhas leakage in spite of their difficulties in representing the Agulhas rings properties. A coarser resolution climate model (2 deg.) does not resolve the spatio-temporal mechanism of variability of Agulhas leakage. Hence it is expected to underestimate the contribution of Agulhas Current System to climate variability.
Resumo:
This work presents a computational, called MOMENTS, code developed to be used in process control to determine a characteristic transfer function to industrial units when radiotracer techniques were been applied to study the unit´s performance. The methodology is based on the measuring the residence time distribution function (RTD) and calculate the first and second temporal moments of the tracer data obtained by two scintillators detectors NaI positioned to register a complete tracer movement inside the unit. Non linear regression technique has been used to fit various mathematical models and a statistical test was used to select the best result to the transfer function. Using the code MOMENTS, twelve different models can be used to fit a curve and calculate technical parameters to the unit.
Resumo:
A significant focus of hydrothermal vent ecological studies has been to understand how species cope with various stressors through physiological tolerance and biochemical resistance. Yet, the environmental conditions experienced by vent species have not been well characterized. This objective requires continuous observations over time intervals that can capture environmental variability at scales that are relevant to animals. We used autonomous temperature logger arrays (four roughly parallel linear arrays of 12 loggers spaced every 10–12 cm) to study spatial and temporal variations in the thermal regime experienced by hydrothermal vent macrofauna at a diffuse flow vent. Hourly temperatures were recorded over eight months from 2010 to 2011 at Grotto vent in the Main Endeavour vent field on the Juan de Fuca Ridge, a focus area of the Ocean Networks Canada cabled observatory. The conspicuous animal assemblages in video footage contained Ridgeia piscesae tubeworms, gastropods (primarily Lepetodrilus fucensis), and polychaetes (polynoid scaleworms and the palm worm Paralvinella palmiformis). Two dimensional spatial gradients in temperature were generally stable over the deployment period. The average temperature recorded by all arrays, and in some individual loggers, revealed distinctive fluctuations in temperature that often corresponded with the tidal cycle. We postulate that this may be related to changes in bottom currents or fluctuations in vent discharge. A marked transient temperature increase lasting over a period of days was observed in April 2011. While the distributions and behavior of Juan de Fuca Ridge vent invertebrates may be partially constrained by environmental temperature and temperature tolerance, except for the one transient high-temperature event, observed fluid temperatures were generally similar to the thermal preferences for some species, and typically well below lethal temperatures for all species. Average temperatures of the four arrays ranged from 4.1 to 11.0 °C during the deployment, indicating that on an hourly timescale the temperature conditions in this tubeworm community were fairly moderate and stable. The generality of these findings and behavioural responses of vent organisms to predictable rhythmicity and non-periodic temperature shifts are areas for further investigation
Resumo:
The long-term adverse effects on health associated with air pollution exposure can be estimated using either cohort or spatio-temporal ecological designs. In a cohort study, the health status of a cohort of people are assessed periodically over a number of years, and then related to estimated ambient pollution concentrations in the cities in which they live. However, such cohort studies are expensive and time consuming to implement, due to the long-term follow up required for the cohort. Therefore, spatio-temporal ecological studies are also being used to estimate the long-term health effects of air pollution as they are easy to implement due to the routine availability of the required data. Spatio-temporal ecological studies estimate the health impact of air pollution by utilising geographical and temporal contrasts in air pollution and disease risk across $n$ contiguous small-areas, such as census tracts or electoral wards, for multiple time periods. The disease data are counts of the numbers of disease cases occurring in each areal unit and time period, and thus Poisson log-linear models are typically used for the analysis. The linear predictor includes pollutant concentrations and known confounders such as socio-economic deprivation. However, as the disease data typically contain residual spatial or spatio-temporal autocorrelation after the covariate effects have been accounted for, these known covariates are augmented by a set of random effects. One key problem in these studies is estimating spatially representative pollution concentrations in each areal which are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over modelled concentrations (grid level) from an atmospheric dispersion model. The aim of this thesis is to investigate the health effects of long-term exposure to Nitrogen Dioxide (NO2) and Particular matter (PM10) in mainland Scotland, UK. In order to have an initial impression about the air pollution health effects in mainland Scotland, chapter 3 presents a standard epidemiological study using a benchmark method. The remaining main chapters (4, 5, 6) cover the main methodological focus in this thesis which has been threefold: (i) how to better estimate pollution by developing a multivariate spatio-temporal fusion model that relates monitored and modelled pollution data over space, time and pollutant; (ii) how to simultaneously estimate the joint effects of multiple pollutants; and (iii) how to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. Specifically, chapters 4 and 5 are developed to achieve (i), while chapter 6 focuses on (ii) and (iii). In chapter 4, I propose an integrated model for estimating the long-term health effects of NO2, that fuses modelled and measured pollution data to provide improved predictions of areal level pollution concentrations and hence health effects. The air pollution fusion model proposed is a Bayesian space-time linear regression model for relating the measured concentrations to the modelled concentrations for a single pollutant, whilst allowing for additional covariate information such as site type (e.g. roadside, rural, etc) and temperature. However, it is known that some pollutants might be correlated because they may be generated by common processes or be driven by similar factors such as meteorology. The correlation between pollutants can help to predict one pollutant by borrowing strength from the others. Therefore, in chapter 5, I propose a multi-pollutant model which is a multivariate spatio-temporal fusion model that extends the single pollutant model in chapter 4, which relates monitored and modelled pollution data over space, time and pollutant to predict pollution across mainland Scotland. Considering that we are exposed to multiple pollutants simultaneously because the air we breathe contains a complex mixture of particle and gas phase pollutants, the health effects of exposure to multiple pollutants have been investigated in chapter 6. Therefore, this is a natural extension to the single pollutant health effects in chapter 4. Given NO2 and PM10 are highly correlated (multicollinearity issue) in my data, I first propose a temporally-varying linear model to regress one pollutant (e.g. NO2) against another (e.g. PM10) and then use the residuals in the disease model as well as PM10, thus investigating the health effects of exposure to both pollutants simultaneously. Another issue considered in chapter 6 is to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. There are in total four approaches being developed to adjust the exposure uncertainty. Finally, chapter 7 summarises the work contained within this thesis and discusses the implications for future research.
H-infinity control design for time-delay linear systems: a rational transfer function based approach
Resumo:
The aim of this paper is to present new results on H-infinity control synthesis for time-delay linear systems. We extend the use of a finite order LTI system, called comparison system to H-infinity analysis and design. Differently from what can be viewed as a common feature of other control design methods available in the literature to date, the one presented here treats time-delay systems control design with classical numeric routines based on Riccati equations arisen from H-infinity theory. The proposed algorithm is simple, efficient and easy to implement. Some examples illustrating state and output feedback design are solved and discussed in order to put in evidence the most relevant characteristic of the theoretical results. Moreover, a practical application involving a 3-DOF networked control system is presented.
Resumo:
We propose a positive, accurate moment closure for linear kinetic transport equations based on a filtered spherical harmonic (FP_N) expansion in the angular variable. The FP_N moment equations are accurate approximations to linear kinetic equations, but they are known to suffer from the occurrence of unphysical, negative particle concentrations. The new positive filtered P_N (FP_N+) closure is developed to address this issue. The FP_N+ closure approximates the kinetic distribution by a spherical harmonic expansion that is non-negative on a finite, predetermined set of quadrature points. With an appropriate numerical PDE solver, the FP_N+ closure generates particle concentrations that are guaranteed to be non-negative. Under an additional, mild regularity assumption, we prove that as the moment order tends to infinity, the FP_N+ approximation converges, in the L2 sense, at the same rate as the FP_N approximation; numerical tests suggest that this assumption may not be necessary. By numerical experiments on the challenging line source benchmark problem, we confirm that the FP_N+ method indeed produces accurate and non-negative solutions. To apply the FP_N+ closure on problems at large temporal-spatial scales, we develop a positive asymptotic preserving (AP) numerical PDE solver. We prove that the propose AP scheme maintains stability and accuracy with standard mesh sizes at large temporal-spatial scales, while, for generic numerical schemes, excessive refinements on temporal-spatial meshes are required. We also show that the proposed scheme preserves positivity of the particle concentration, under some time step restriction. Numerical results confirm that the proposed AP scheme is capable for solving linear transport equations at large temporal-spatial scales, for which a generic scheme could fail. Constrained optimization problems are involved in the formulation of the FP_N+ closure to enforce non-negativity of the FP_N+ approximation on the set of quadrature points. These optimization problems can be written as strictly convex quadratic programs (CQPs) with a large number of inequality constraints. To efficiently solve the CQPs, we propose a constraint-reduced variant of a Mehrotra-predictor-corrector algorithm, with a novel constraint selection rule. We prove that, under appropriate assumptions, the proposed optimization algorithm converges globally to the solution at a locally q-quadratic rate. We test the algorithm on randomly generated problems, and the numerical results indicate that the combination of the proposed algorithm and the constraint selection rule outperforms other compared constraint-reduced algorithms, especially for problems with many more inequality constraints than variables.
Resumo:
Describes three units of time helpful for understanding and evaluating classificatory structures: long time (versions and states of classification schemes), short time (the act of indexing as repeated ritual or form), and micro-time (where stages of the interpretation process of indexing are separated out and inventoried). Concludes with a short discussion of how time and the impermanence of classification also conjures up an artistic conceptualization of indexing, and briefly uses that to question the seemingly dominant understanding of classification practice as outcome of scientific management and assembly line thought.
Resumo:
Nesta dissertação estudámos as séries temporais que representam a complexa dinâmica do comportamento. Demos especial atenção às técnicas de dinâmica não linear. As técnicas fornecem-nos uma quantidade de índices quantitativos que servem para descrever as propriedades dinâmicas do sistema. Estes índices têm sido intensivamente usados nos últimos anos em aplicações práticas em Psicologia. Estudámos alguns conceitos básicos de dinâmica não linear, as características dos sistemas caóticos e algumas grandezas que caracterizam os sistemas dinâmicos, que incluem a dimensão fractal, que indica a complexidade de informação contida na série temporal, os expoentes de Lyapunov, que indicam a taxa com que pontos arbitrariamente próximos no espaço de fases da representação do espaço dinâmico, divergem ao longo do tempo, ou a entropia aproximada, que mede o grau de imprevisibilidade de uma série temporal. Esta informação pode então ser usada para compreender, e possivelmente prever, o comportamento. ABSTRACT: ln this thesis we studied the time series that represent the complex dynamic behavior. We focused on techniques of nonlinear dynamics. The techniques provide us a number of quantitative indices used to describe the dynamic properties of the system. These indices have been extensively used in recent years in practical applications in psychology. We studied some basic concepts of nonlinear dynamics, the characteristics of chaotic systems and some quantities that characterize the dynamic systems, including fractal dimension, indicating the complexity of information in the series, the Lyapunov exponents, which indicate the rate at that arbitrarily dose points in phase space representation of a dynamic, vary over time, or the approximate entropy, which measures the degree of unpredictability of a series. This information can then be used to understand and possibly predict the behavior.
Resumo:
In this thesis work a nonlinear model for Interdigitated Capacitors (IDCs) based on ferroelectric materials, is proposed. Through the properties of materials such as Hafnium-Zirconium Oxide (HfZrO2), it is possible to realize tunable radiofrequency (RF) circuits. In particular, the model proposed in this thesis describes the use of an IDC, realized on a High-Resistivity silicon substrate, as a phase shifter for beam-steering applications. The model is obtained starting from already present experimental measurements, through which it is possible to identify a circuit model. The model is tested for both low power values and other power values using Harmonic Balance simulations, which show an excellent convergence of the model up to 40 dBm of input power. Furthermore, an array composed by two patches operating both at 2.55 GHz, which exploits the tunable properties of the HfZrO-based IDC is proposed. At 0dBm the model shows a 47° phase shift with polarization -1 V and 1 V which leads to a 11° steering of the main lobe of the array.
Resumo:
To investigate the degree of T2 relaxometry changes over time in groups of patients with familial mesial temporal lobe epilepsy (FMTLE) and asymptomatic relatives. We conducted both cross-sectional and longitudinal analyses of T2 relaxometry with Aftervoxel, an in-house software for medical image visualization. The cross-sectional study included 35 subjects (26 with FMTLE and 9 asymptomatic relatives) and 40 controls; the longitudinal study was composed of 30 subjects (21 with FMTLE and 9 asymptomatic relatives; the mean time interval of MRIs was 4.4 ± 1.5 years) and 16 controls. To increase the size of our groups of patients and relatives, we combined data acquired in 2 scanners (2T and 3T) and obtained z-scores using their respective controls. General linear model on SPSS21® was used for statistical analysis. In the cross-sectional analysis, elevated T2 relaxometry was identified for subjects with seizures and intermediate values for asymptomatic relatives compared to controls. Subjects with MRI signs of hippocampal sclerosis presented elevated T2 relaxometry in the ipsilateral hippocampus, while patients and asymptomatic relatives with normal MRI presented elevated T2 values in the right hippocampus. The longitudinal analysis revealed a significant increase in T2 relaxometry for the ipsilateral hippocampus exclusively in patients with seizures. The longitudinal increase of T2 signal in patients with seizures suggests the existence of an interaction between ongoing seizures and the underlying pathology, causing progressive damage to the hippocampus. The identification of elevated T2 relaxometry in asymptomatic relatives and in patients with normal MRI suggests that genetic factors may be involved in the development of some mild hippocampal abnormalities in FMTLE.
Resumo:
In acquired immunodeficiency syndrome (AIDS) studies it is quite common to observe viral load measurements collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays. A complication arises when these continuous repeated measures have a heavy-tailed behavior. For such data structures, we propose a robust structure for a censored linear model based on the multivariate Student's t-distribution. To compensate for the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is employed. An efficient expectation maximization type algorithm is developed for computing the maximum likelihood estimates, obtaining as a by-product the standard errors of the fixed effects and the log-likelihood function. The proposed algorithm uses closed-form expressions at the E-step that rely on formulas for the mean and variance of a truncated multivariate Student's t-distribution. The methodology is illustrated through an application to an Human Immunodeficiency Virus-AIDS (HIV-AIDS) study and several simulation studies.
Resumo:
Remote sensing data are each time more available and can be used to monitor the vegetal development of main agricultural crops, such as the Arabic coffee in Brazil, since that the relationship between spectral and agronomical data be well known. Therefore, this work had the main objective to assess the use of Quickbird satellite images to estimate biophysical parameters of coffee crop. Test area was composed by 25 coffee fields located between the cities of Ribeirão Corrente, Franca and Cristais Paulista (SP), Brazil, and the biophysical parameters used were row and between plants spacing, plant height, LAI, canopy diameter, percentage of vegetation cover, roughness and biomass. Spectral data were the reflectance of four bands of QUICKBIRD and values of four vegetations indexes (NDVI, GVI, SAVI and RVI) based on the same satellite. All these data were analyzed using linear and nonlinear regression methods to generate estimation models of biophysical parameters. The use of regression models based on nonlinear equations was more appropriate to estimate parameters such as the LAI and the percentage of biomass, important to indicate the productivity of coffee crop.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física