931 resultados para precious metals
Resumo:
Accumulation and distributions of aliphatic and polyaromatic hydrocarbons (PAHs) and heavy metals were measured in tissues of the clam Ruditapes philippinarum collected from 5 sites in Jiaozhou Bay, Qingdao, China. The concentrations of total aliphatic hydrocarbon and PAHs ranged from 570 to 2 574 ng/gdw (gram dry weight) and from 276 to 939 ng/gdw, in the most and least polluted sites, respectively. The bio-accumulation of hydrocarbons and PAHs in the clams appeared to be selective. Aliphatic hydrocarbons were predominantly represented by short chain (< nC(23)) n-alkanes, suggesting that petroleum hydrocarbons were likely the major contamination source. The selective uptake of 3 and 4 ring PAHs, such as naphthalene, fluorene, phenanthrene, fluoranthene and pyrene, by the clams was probably related to the physiological and bio-kinetic processes that were energetically favorable for uptake of compounds with fewer rings. Accumulation of the metals Cd, Cu, Zn, Pb, Cr, Hg, and As in the clam tissues also showed high variability, ranging from 0.043 to 87 A mu g/gdw. Among the 7 detected metals, Zn, Cd, Cu, and As had a particularly high potential of accumulation in R. philippinarum. In general, a positive correlation was found between the tissue concentrations and sediment concentrations of hydrocarbons and of some metals. Our study suggests that moderate contamination with polyaromatic hydrocarbons, and low to moderate contamination with metals, currently exists for clam R. philippinarum in Jiaozhou Bay, in comparison with other regional studies. A long-term monitoring program is certainly needed for assessment of the potential ecological influence and toxicity of these contaminants of R. philippinarum in Jiaozhou Bay.
Resumo:
Manila clams (Ruditapes philippinarum) and sediments were collected bimonthly during 2007 at five locations in Jiaozhou Bay near Qingdao, China, to determine heavy metal concentrations and to assess the validation of R. philippinarum as a metal biomonitor. Concentrations of heavy metals in clam soft tissues ranged between 0.75 and 3.31, 0.89 and 15.20, 5.70 and 26.03, 52.12 and 110.33, 10.30 and 72.34, 9.64 and 28.60, and 3.15 and 52.75 mu g g (-aEuro parts per thousand 1) dry weight for Cd, Pb, Cu, Zn, Mn, Cr, and Ni, respectively. Most of the highest values occurred at the northeast bay and the lowest values occurred at the western part. Regarding seasonal variation, relatively high tissue metal concentrations were observed during October or December. A similar pattern was also found in habitat sediments. There was a strong correlation between the concentrations of Cd, Pb, Zn, Mn, Cr, and Ni in soft tissues and surrounding sediments. It is indicated that R. philippinarum could be used as a biomonitor for heavy metal contamination in Jiaozhou Bay.
Resumo:
The relationship between microbial colonization of two kinds of passive metals and ennobling of their corrosion potentials (E-corr) were studied. Two types of passive metal coupons were exposed to natural seawater for about ten days. Under laboratory conditions, all corrosion potentials of the samples ennobled for about 200 mV. Epifluorescence microscopy showed that bacteria adsorption was the main process during about the first day immersion and bacteria reproduced in the following days. The bacteria number increased on the metal surface according to an exponential law and the kinetics of bacteria adsorption at the metal surface during this period was proposed. The ennoblement of E-corr was similar to the increasing bacteria number: E-corr increased quickly during the bacteria adsorption process and increased slowly after biofilms had formed.
Resumo:
The changes of corrosion potential (E-corr) of metals immersed in seawater were investigated with electrochemical technology and epifluoresence microscopy. In natural seawater, changes of E-corr were determined by the surface corrosion state of the metal. E-corr of passive metals exposed to natural seawater shifted to noble direction for about 150 mV in one day and it didn't change in sterile seawater. The in-situ observation showed that biofilms settled on the surfaces of passive metals when E-corr moved in noble direction. The bacteria number increased on the metal surface according to exponential law and it was in the same way with the ennoblement of E-corr. The attachment of bacteria during the initial period played an important role in the ennoblement of E-corr and it is believed that the carbohydrate and protein in the biofilm are reasons for this phenomenon. The double layer capacitance (C-dl) of passive metals decreased with time when immersed in natural seawater, while remained almost unchanged in sterile seawater. The increased thickness and reduced dielectric constant of C-dl may be reasons.