875 resultados para porous anodic alumina mask
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Transient non-Darcy forced convection on a flat plate embedded in a porous medium is investigated using the Forchheimer-extended Darcy law. A sudden uniform pressure gradient is applied along the flat plate, and at the same time, its wall temperature is suddenly raised to a high temperature. Both the momentum and energy equations are solved by retaining the unsteady terms. An exact velocity solution is obtained and substituted into the energy equation, which then is solved by means of a quasi-similarity transformation. The temperature field can be divided into the one-dimensional transient (downstream) region and the quasi-steady-state (upstream) region. Thus the transient local heat transfer coefficient can be described by connecting the quasi-steady-state solution and the one-dimensional transient solution. The non-Darcy porous inertia works to decrease the velocity level and the time required for reaching the steady-state velocity level. The porous-medium inertia delays covering of the plate by the steady-state thermal boundary layer. © 1990.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Structural changes induced by ultrasound during the aging of the aluminum monohydroxide (boehmite) were studied by means of X-ray diffraction (XRD) and nitrogen adsorption. The BET surface area and the pore volume of the ultrasound stimulated hydroxide (HU) are about 40% less than those of the non-stimulated one (HS). The mean pore size practically does not change, while the mean crystallite size (L) is about 25% greater in the HU system. The increase of L alone is not enough to account for the surface area diminution, suggesting that the sonication also induces compaction by elimination of some porosity. The sonication of the precursor hydroxide does not seem to play an apparent role in the structural properties of the resulting calcinated γ-alumina. © 1997 Elsevier Science B.V.
Resumo:
The problem of non-darcian transient film condensation adjacent to a vertical flat plate embedded in a porous medium has been considered. The governing equation for the boundary layer thickness was obtained by an integral method and solved approximately by the method of integral relations. It is shown that the results are in good agreement with those obtained exactly by the method of characteristics.
Resumo:
The problem of non-darcian transient film condensation adjacent to a vertical flat plate embedded in a porous medium has been considered. The governing equation for the boundary layer thickness was obtained by an integral method and solved approximately by the method of integral relations. It is shown that the results are in good agreement with those obtained exactly by the method of characteristics.
Resumo:
Objective - To investigate the use of the laryngeal mask airway (LMA) in dogs. Study Design - Prospective experimental study. Animals - Eight healthy adult mixed breed dogs weighing from 15 to 20 kg. Methods - The dogs were anesthetized with intravenous pentobarbital. An LMA was introduced after the induction of anesthesia and 1 L/min O2 plus 1 L/min air was delivered using a circle anesthetic system. Respiratory rate, tidal volume, arterial O2 saturation (pulse oximetry), end tidal CO2, inspired fraction of O2, pulse rate, and mean arterial blood pressure were measured after the insertion of the LMA and 30, 60, 90, and 120 minutes afterwards. Results - There were no changes in respiratory rate, tidal volume, arterial O2 saturation, and pulse rate during anesthesia. End tidal CO2 decreased significantly by the end of anesthesia and ventilation appeared satisfactory. Conclusions - An LMA appeared to be an alternative option to maintain the patency of the airway in dogs. Clinical Relevance - This device may allow safe maintenance of an airway in dogs when intubation is difficult or when it interferes with the procedure (eg, cervical myelography). ©Copyright 1999 by The American College of Veterinary Surgeons.
Resumo:
The corrosion resistance of resin bonded alumina/magnesia/graphite refractories containing different kinds of aggregates were investigated when submitted to the action of slags of several CaO/SiO2 ratios. The laboratory testing was performed by means of the rotary slag attack test. Specifically evaluated was the influence of alumina/carbon ratio and magnesia and silica contents on the refractories corrosion resistance. It was found that this property could be improved by increasing the refractory Al2O3/SiO2 ratio as well as by choosing the appropriate Al2O3/C ratio. © 2000 Elsevier Science Ltd.
Resumo:
Purpose: The objective of this study was to test the following hypothesis: the silica coating on ceramic surface increases the bond strength of resin cement to a ceramic. Materials and Methods: In-Ceram Alumina blocks were made and the ceramic surface was treated: G1 - sandblasting with 110-μm aluminum oxide particles; G2 - Rocatec System: tribochemicai silica coating (Rocatec-Pre powder + Rocatec-Plus powder + Rocatec-Sil); G3 - CoJet System: silica coating (CoJet-Sand) + ESPE-Sil. The ceramic blocks were cemented to composite blocks with Panavia F resin cement (under a load of 750 g/1 min). The cemented blocks were stored in distilled water at 37°C for 7 days and sectioned along the x and y axes with a diamond disk. Samples with an adhesive area of ca 0.8 mm 2 (n = 45) were obtained. The samples were attached to an adapted device for the microtensile test, which was performed in a universal testing machine (EMIC) at a crosshead speed of 1 mm/min. Results: The obtained results were submitted to ANOVA and Tukey's test. Mean values of tensile strength (MPa) and standard deviation values were: (G1) 16.8 ± 3.2; (G2) 30.6 ± 4.5; (G3) 33.0 ± 5.0. G2 and 63 presented greater tensile strength than G1. There was no significant difference between G2 and G3. All the failures took place at the ceramic/resin cement interface. Conclusion: The silica coating (Rocatec or CoJet systems) of the ceramic surface increased the bond strength between the Panavia F resin cement and alumina-based ceramic.
Resumo:
The processing of titanium porous coatings using powder metallurgy technique to achieve a porous structure that allows osseointegration with bone tissue was discussed. The porous microstructure exhibited micropores and interconnected macropores with size ranges that allowed bone ingrowth. The macropores in the coatings were originated from the binder evaporation while the micropore was related with the porous titanium powder and the low compaction pressure used. The in vivo evaluation indicated that osseointegration had occurred between the bone and porous material.
Resumo:
Purpose: The purpose of this work was to study the bone tissue reaction after porous polyethylene (Polipore) implantation into surgical defects in the parietal bones of rats with streptozotocin-induced diabetes, treated with salmon calcitonin. Materials and Methods: Porous polyethylene implants were placed in bone defects created in 36 adult female rats. The rats were divided into 3 equal groups: diabetic treated with calcitonin (DCa), diabetic (D), and control (C). The animals of the DCa group received applications of salmon calcitonin on alternating days immediately after the surgery until sacrifice. The rats were sacrificed after 15, 30, 60, and 90 days, and the defects were examined histologically and statistically through histomorphometric analysis. Results: Histomorphometric analysis showed that there was no statistically significant difference in the mean quantity of inflammatory cells among all study groups after 15 and 90 days. At 30 days, a statistically significant difference was observed between the D and C groups and the D and DCa groups. At 60 days, there was no statistically significant difference between the D and DCa groups. Discussion: Porous polyethylene can be considered an option for implant material when there are investigations that prove its biocompatibility and stability in the host tissues. Salmon calcitonin positively aided the bone repair and attenuated the inflammatory response until 30 days after the surgery. Conclusion: Porous polyethylene was tolerated by the host tissues in all groups, and moderate chronic inflammatory reaction was observed up to the 90-day period. Salmon calcitonin attenuated the inflammatory response up until 30 days.
Resumo:
We report the singular filtration properties of an ultrafiltration membrane made with mesoporous silica that exhibits cylindrical pores aligned mostly normal to the support. This membrane supported on tubular commercial macroporous alumina supports was prepared by the interfacial growth mechanism between stable silica-surfactant hybrid micelles made of the association of silica oligomers with polyethyleneoxide-based (PEO) surfactants and sodium fluoride, a well-known silica condensation catalyst [Boissière et al., An ultrafiltration membrane made with mesoporous MSU-X silica, Chem. Mater. 15 (2003) 460-463]. It appears that the combined effect of the silica nature of the membrane, whose surface charge can be easily adjusted by changing the pH and the non-connected cylindrical shape of the pores provides a new behavior in the retention properties, as proved by the filtration of polyoxyethylene polymers (PEO) with different molecular weights. Depending on the filtration conditions, a rejection rate of 80% and a steep cut-off at 2000 Da can be obtained or, on the reverse, polymers three times bigger than the pore diameter can diffuse through the membrane. This new filtration mechanism, which opens up new modes of separation modes, is explained in the light of both topology of the porous network and pH-dependent interactions between PEO polymers and silica porous media. © 2004 Elsevier B.V. All rights reserved.
Resumo:
We report preparation and the singular filtration properties of an ultrafiltration membrane made with MSU-type mesoporous silica that exhibits cylindrical pores aligned mostly normal to the support. This membrane supported on tubular commercial macroporous alumina supports was prepared by the interfacial growth mechanism between stable silica-surfactant hybrid micelles made of the association of silica oligomers with polyethyleneoxide-based (PEO) surfactants and sodium fluoride, a well-known silica condensation catalyst. It appears that the combined effect of the silica nature of the membrane, whose surface charge can be easily adjusted by changing the pH and the non-connected cylindrical shape of the pores provides a new behavior in the retention properties, as proved by the filtration of polyoxyethylene polymers (PEO) with different molecular weights. Depending on the filtration conditions, a rejection rate of 80 % and a steep cut-off at 2,000 Da can be obtained or, on the reverse, polymers three times bigger than the pore diameter can diffuse through the membrane. This new filtration mechanism, which opens up new modes of separation modes, is explained in the light of both topology of the porous network and pH-dependent interactions between PEO polymers and silica porous media. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Purpose: To evaluate the fatigue resistance of the bond between dentin and glass-infiltrated alumina ceramic, using different luting protocols. Materials and Methods: The null hypothesis is that the fatigue resistance varies with the luting strategy. Forty blocks of In-Ceram Alumina were prepared, and one surface of each block was abraded with 110-μm aluminum oxide particles. Then, the blocks were luted to flat dentin surfaces of 40 human third molars, using 4 different luting strategies (luting system [LS]/ceramic surface conditioning [CSC]) (n=10): (G1) [LS] RelyX-Unicem/[CSC] airborne abrasion with 110-μm Al2O3 particles; (G2) [LS] One-Step + Duo-Link (bis-GMA-based resin)/[CSC] etching with 4% hydrofluoric acid + silane agent; (G3) [LS] ED-Primer + Panavia F (MDP-based resin)/[CSC] Al2O 3; (G4) [LS] Scotchbond1+RelyX-ARC (bis-GMA-based resin)/[CSC] chairside tribochemical silica coating (air abrasion with 30-μm SiO x particles + silane). After 24 h of water storage at 37°C, the specimens were subjected to 106 fatigue cycles in shear with a sinusoidal load (0 to 21 N, 8 Hz frequency, 37°C water). A fatigue survivor score was given, considering the number of the fatigue cycles until fracture. The failure modes of failed specimens were observed in a SEM. Results: G3 (score = 5.9, 1 failure) and G4 (score = 6, no failures) were statistically similar (p = 0.33) and had significantly higher fatigue resistance than G1 (score = 3.9, 5 failures) and G2 (score = 3.7, 6 failures) (p < 0.03). SEM analysis of fractured specimens of G1 and G2 showed that almost all the failures were between ceramic and cement. Conclusion: The MDP-based resin cement + sandblasting with Al2O3 particles (G3) and bis-GMA-based resin cement + tribochemical silica coating (G4), both using the respective dentin bonding systems, were the best luting protocols for the alumina ceramic. The null hypothesis was confirmed.
Resumo:
Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (In-Ceram Zirconia) ceramics. Materials and Methods: Ten blocks (5 ×6 × 8 mm) of In-Ceram Alumina (AL), In-Ceram Zirconia (ZR), and Procera (PR) ceramics were fabricated according to each manufacturer's instructions and duplicated in composite. The specimens were assigned to one of the two following treatment conditions: (1) airborne particle abrasion with 110-μm Al2O3 particles + silanization, (2) silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. Each ceramic block was duplicated in composite resin (W3D-Master, Wilcos, Petrópolis, RJ, Brazil) using a mold made out of silicon impression material. Composite resin layers were incrementally condensed into the mold to fill up the mold and each layer was light polymerized for 40 s. The composite blocks were bonded to the surface-conditioned ceramic blocks using a resin cement system (Panavia F, Kuraray, Okayama, Japan). One composite resin block was fabricated for each ceramic block. The ceramic-composite was stored at 37°C in distilled water for 7 days prior to bond tests. The blocks were cut under water cooling to produce bar specimens (n = 30) with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (crosshead speed: 1 mm/min). Bond strength values were statistically analyzed using two-way ANOVA and Tukey's test (≤ 0.05). Results: Silica coating with silanization increased the bond strength significantly for all three high-strength ceramics (18.5 to 31.2 MPa) compared to that of airborne particle abrasion with 110-μm Al2O3 (12.7-17.3 MPa) (ANOVA, p < 0.05). PR exhibited the lowest bond strengths after both Al2O3 and silica coating (12.7 and 18.5 MPa, respectively). Conclusion: Conditioning the high-strength ceramic surfaces with silica coating and silanization provided higher bond strengths of the resin cement than with airborne particle abrasion with 110-μm Al2O3 and silanization.