906 resultados para polypropylene glycol
Resumo:
This paper describes the design and manufacture of a low-cost full scale pultrusion prototype equipment and discusses the production and obtained mechanical properties of polypropylene/glass (GF/PP) reinforced composite ba rs fabricated by using the prototype equipment. Three different GF/PP pre-impregnated ra w-materials, a commercial GF/PP comingled system from Vetrotex, a GF/PP powder coat ed towpreg [1-3] and, a GF/PP pre- consolidated tape (PCT) produced in our laboratorie s, were used in the production of composite bars that were subsequently submitted to mechanical testing in order to determine the relevant mechanical properties and quantify the consolidation quality. Samples of the different composite profiles were also observed und er SEM microscopy.
Resumo:
Interest in polyethylene and polypropylene bonding has increased in the last years. However, adhesive joints with adherends which are of low surface energy and which are chemically inert present several difficulties. Generally, their high degree of chemical resistance to solvents and dissimilar solubility parameters limit the usefulness of solvent bonding as a viable assembly technique. One successful approach to adhesive bonding of these materials involves proper selection of surface pre-treatment prior to bonding. With the correct pre-treatment it is possible to glue these materials with one or more of several adhesives required by the applications involved. A second approach is the use of adhesives without surface pre-treatment, such as hot melts, high tack pressure-sensitive adhesives, solvent-based specialty adhesives and, more recently, structural acrylic adhesives as such 3M DP-8005® and Loctite 3030®. In this paper, the shear strengths of two acrylic adhesives were evaluated using the lap shear test method ASTM D3163 and the block shear test method ASTM D4501. Two different industrial polyolefins (polyethylene and polypropylene) were used for adherends. However, the focus of this study was to measure the shear strength of polyethylene joints with acrylic adhesives. The effect of abrasion was also studied. Some test specimens were manually abraded using 180 and 320 grade abrasive paper. An additional goal of this work was to examine the effect of temperature and moisture on mechanical strength of adhesive joints.
Resumo:
The mechanical behaviour of single lap adhesive joints was characterized, using two commercial acrylic adhesives. For this purpose the surfaces were cleaned and abraded using fine grit abrasives. The effect of temperature and moisture in the mechanical strength was, also, evaluated. For this characterization, mechanical tests were carried out according procedure and geometry foreseen by ASTM D3163-01 [1] and ASTM D4501-01 [2] standards. The results show that it is possible to get good strengths without great surface preparation. The temperature and moisture effect observed don’t seem to be relevant for the mechanical behaviour.
Resumo:
Polyolefins are especially difficult to bond due to their non-polar, non-porous and chemically inert surfaces. Acrylic adhesives used in industry are particularly suited to bond these materials, including many grades of polypropylene (PP) and polyethylene (PE), without special surface preparation. In this work, the tensile strength of single-lap PE and mixed joints bonded with an acrylic adhesive was investigated. The mixed joints included PE with aluminium (AL) or carbon fibre reinforced plastic (CFRP) substrates. The PE substrates were only cleaned with isopropanol, which assured cohesive failures. For the PE CFRP joints, three different surfaces preparations were employed for the CFRP substrates: cleaning with acetone, abrasion with 100 grit sand paper and peel-ply finishing. In the PE AL joints, the AL bonding surfaces were prepared by the following methods: cleaning with acetone, abrasion with 180 and 320 grit sand papers, grit blasting and chemical etching with chromic acid. After abrasion of the CFRP and AL substrates, the surfaces were always cleaned with acetone. The tensile strengths were compared with numerical results from ABAQUS® and a mixed mode (I+II) cohesive damage model. A good agreement was found between the experimental and numerical results, except for the PE AL joints, since the AL surface treatments were not found to be effective.
Resumo:
In the injection moulding of polypropylene reinforced with hard glass fibres, die materials are commonly subjected to severe abrasive wear. In order to improve its wear resistance, an unbalanced magnetron sputtering PVD compositional monolayered coating has been produced. The film was composed by a nanostructured TiB2 monolayer. Microstructure characterization and thickness evaluation were conducted by scanning electron microscopy (SEM). Film topography and roughness were accessed by SEM and Atomic Force Microscopy (AFM). The phase analyse was investigated by X-ray diffraction (XRD), using Cu Kalpha radiation. Scratch tests were conducted in order to study the film adhesion to the substrate. Load-Displacement curves (nanoindentation analysis) allowed measuring the film hardness and Young's modulus. A ball-cratering tribometer was used to determine the micro-abrasion laboratorial wear resistance, under different tests conditions, using SiC particles in distilled water slurry. At the end of these tests, the worn surfaces were analyzed by SEM and Energy Dispersive X-ray Spectroscopy (EDS) in order to compare these results with some other coatings already tested in the same conditions. To test the practical wear resistance, 135000 injection cycles were done in a plastic injection industrial mould. Coated samples were put on the plastic feed canal, after a turbulent zone. In these tests, a 30% (wt) glass fibres reinforced polypropylene was used. Worn sample surfaces were analyzed by SEM after 45.000 and 90.000 cycles. Image analyses were made in order to evaluate the damage increases and to observe the wear mechanisms involved.
Resumo:
Abrasion by glass fibers during injection molding of fiber reinforced plastics raises new challenges to the wear performance of the molds. In the last few decades, a large number of PVD and CVD coatings have been developed with the aim of minimizing abrasion problems. In this work, two different coatings were tested in order to increase the wear resistance of the surface of a mold used for glass fiber reinforced plastics: TiAlSiN and CrN/CrCN/DLC. TiAlSiN was deposited as a graded monolayer coating while CrN/CrCN/DLC was a nanostructured coating consisting of three distinct layers. Both coatings were produced by PVD unbalanced magnetron sputtering and were characterized using scanning electron microscopy (SEM) provided with energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), micro hardness (MH) and scratch test analysis. Coating morphology, thickness, roughness, chemical composition and structure, hardness and adhesion to the substrate were investigated. Wear resistance was characterized through industrial tests with coated samples and an uncoated reference sample inserted in a feed channel of a plastic injection mold working with 30 wt.% glass fiber reinforced polypropylene. Results after 45,000 injection cycles indicate that the wear resistance of the mold was increased by a factor of 25 and 58, by the TiAlSiN and CrN/CrCN/DLC coatings, respectively, over the uncoated mold steel.
Resumo:
In this study, the tensile strength of single-lap joints (SLJs) between similar and dissimilar adherends bonded with an acrylic adhesive was evaluated experimentally and numerically. The adherend materials included polyethylene (PE), polypropylene (PP), carbon-epoxy (CFRP), and glass-polyester (GFRP) composites. The following adherend combinations were tested: PE/PE, PE/PP, PE/CFRP, PE/GFRP, PP/PP, CFRP/CFRP, and GFRP/GFRP. One of the objectives of this work was to assess the influence of the adherends stiffness on the strength of the joints since it significantly affects the peel stresses magnitude in the adhesive layer. The experimental results were also used to validate a new mixed-mode cohesive damage model developed to simulate the adhesive layer. Thus, the experimental results were compared with numerical simulations performed in ABAQUS®, including a developed mixed-mode (I+II) cohesive damage model, based on the indirect use of fracture mechanics and implemented within interface finite elements. The cohesive laws present a trapezoidal shape with an increasing stress plateau, to reproduce the behaviour of the ductile adhesive used. A good agreement was found between the experimental and numerical results.
Resumo:
The injection process of glass fibres reinforced plastics promotes the moulds surface degradation by erosion. In order to improve its wear resistance, several kinds of PVD thin hard coatings were used. It is well-known that nanostructures present a better compromise between hardness and toughness. Indeed, when the coating is constituted by a large number of ultra-thin different layers, cracks and interface troubles tend to decrease. However, it is not clear that these nanostructures present a better wear behaviour in erosion processes. In order to study its wear behaviour, a sputtered PVD nanostructured TiAlCrSiN coating was used. The substrate and film surfaces topography were analyzed by profilometry and atomic force microscopy techniques. Film adhesion to the substrate was evaluated by scratch tests. The surface hardness was measured with a Vickers micro-hardness tester. The wear resistance was evaluated by micro-abrasion with a rotating ball tribometer tests. Slurry of SiC particles in distilled water was used in order to provoke the surface abrasion. Different duration tests were performed in order to analyze the wear evolution. After these tests, the wear mechanisms developed were analyzed by scanning electron microscopy. Wear craters were measured and the wear rate was calculated and discussed. With the same purpose, coated inserts were mounted in an injection mould working with a 30% glass fibres reinforced polypropylene. After 45 000 cycles no relevant wear was registered.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Química e Bioquímica
Resumo:
In this work, plasticizer agents were incorporated in a chitosan based formulation, as a strategy to improve the fragile structure of chitosan based-materials. Three different plasticizers: ethylene glycol, glycerol and sorbitol, were blended with chitosan to prepare 3D dense chitosan specimens. The properties of the obtained structures were assessed for mechanical, microstructural, physical and biocompatibility behavior. The results obtained revealed that from the different specimens prepared, the blend of chitosan with glycerol has superior mechanical properties and good biological behavior, making this chitosan based formulation a good candidate to improve robust chitosan structures for the construction of bioabsorbable orthopedic implants.
Resumo:
As ligações adesivas têm sido cada vez mais utilizadas nos últimos anos em detrimento de outros métodos tais como a soldadura, ligações aparafusadas e ligações rebitadas. Os plásticos de Engenharia têm um papel cada vez mais preponderante na indústria, devido às suas excelentes propriedades. Neste trabalho foram considerados três polímeros diferentes, o Policloreto de Vinilo (PVC) e o Polipropileno (PP) dado o seu baixo custo e peso e a superfície quimicamente inerte e o Politetrafluoretileno (PTFE) devido às suas boas propriedades químicas e excelentes propriedades de deslizamento. No entanto, estes materiais possuem uma baixa energia de superfície e, por isso, são muito difíceis de colar com mais relevância para o PTFE. Assim, após um estudo preliminar foi escolhido, para realizar as colagens necessárias, um adesivo da Tamarron Technology “Tam Tech Adhesive”, próprio para este tipo de substratos difíceis de colar. Posteriormente foi efetuada a sua caraterização através de ensaios de provetes maciços à tração. O principal objetivo deste trabalho foi estudar juntas de sobreposição simples de materiais poliméricos difíceis de colar tais como o PTFE, PP e PVC com recurso a um adesivo que não necessitasse de preparação de superfície. Foram fabricadas juntas de sobreposição simples (JSS) segundo os métodos Lap Shear (LS) e Block Shear (BS) dos três materiais referidos anteriormente e realizados os respetivos ensaios para avaliar o comportamento mecânico das ligações adesivas. Os materiais utilizados como substratos foram também submetidos a ensaios de tração com a finalidade de obter o módulo de elasticidade e as suas propriedades de resistência. Os substratos envolvidos nas juntas adesivas não sofreram qualquer preparação especial das superfícies. Na maioria dos casos consistiu apenas numa limpeza das superfícies com álcool etílico. Contudo, para o PTFE também se experimentou a preparação por abrasão com lixa e por chama. Foi também efetuado um trabalho de simulação numérica por elementos finitos utilizando um modelo de dano coesivo triangular. As resistências ao corte obtidas são superiores em BS comparativamente a LS, exceção feita aos substratos de PTFE aonde os resultados são similares. O tratamento por chama melhorou a resistência mecânica das juntas. Verificou-se também que o modelo numérico simulou adequadamente o comportamento das juntas principalmente das LS.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
This work presents a novel surface Smart Polymer Antibody Material (SPAM) for Carnitine (CRT, a potential biomarker of ovarian cancer), tested for the first time as ionophore in potentiometric electrodes of unconventional configuration. The SPAM material consisted of a 3D polymeric network created by surface imprinting on graphene layers. The polymer was obtained by radical polymerization of (vinylbenzyl) trimethylammonium chloride and 4-styrenesulfonic acid (signaling the binding sites), and vinyl pivalate and ethylene glycol dimethacrylate (surroundings). Non-imprinted material (NIM) was prepared as control, by excluding the template from the procedure. These materials were then used to produce several plasticized PVC membranes, testing the relevance of including the SPAM as ionophore, and the need for a charged lipophilic additive. The membranes were casted over solid conductive supports of graphite or ITO/FTO. The effect of pH upon the potentiometric response was evaluated for different pHs (2-9) with different buffer compositions. Overall, the best performance was achieved for membranes with SPAM ionophore, having a cationic lipophilic additive and tested in HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer, pH 5.1. Better slopes were achieved when the membrane was casted on conductive glass (-57.4 mV/decade), while the best detection limits were obtained for graphite-based conductive supports (3.6 × 10−5mol/L). Good selectivity was observed against BSA, ascorbic acid, glucose, creatinine and urea, tested for concentrations up to their normal physiologic levels in urine. The application of the devices to the analysis of spiked samples showed recoveries ranging from 91% (± 6.8%) to 118% (± 11.2%). Overall, the combination of the SPAM sensory material with a suitable selective membrane composition and electrode design has lead to a promising tool for point-of-care applications.
Resumo:
Chemical sensors and biosensors are widely used to detect various kinds of protein target biomolecules. Molecularly Imprinted Polymers (MIPs) have raised great interest in this area, because these act as antibody-like recognition materials, with high affinity to the template molecule. Compared to natural antibodies, these are also of lower cost and higher stability. There are different types of supports used to carry MIP materials, mostly of these made of gold, favourably assembled on a Screen Printed Electrode (SPE) strategy. For this work a new kind of support for the sensing layer was developed: conductive paper. This support was made by modifying first cellulose paper with paraffin wax (to make it waterproof), and casting a carbon-ink on it afterwards, to turn it conductive. The SPAM approach previously reported in1 was employed herein to assemble to MIP sensing material on the conductive paper. The selected charged monomers were (vinylbenzyl) trimethlammonium chloride (positive charge) or vinylbenzoic acid (negative charge), used to generate binding positions with single-type charge (positive or negative). The non-specific binding area of the MIP layer was assembled by chronoamperometry-assisted polymerization (at 1 V, for 60, 120 or 180 seconds) of vinylbenzoate, cross-linked with ethylene glycol vinyl ether. The BSA biomolecules lying within the polymeric matrix were removed by Proteinase K action. All preparation stages of the MIP assembly were followed by FTIR, Raman spectroscopy and, electrochemical analysis. In general, the best results were obtained for longer polymerization times and positively charged binding sites (which was consistent with a negatively-charged protein under physiological pH, as BSA). Linear responses against BSA concentration ranged from 0.005 to 100 mg/mL, in PBS buffer standard solutions. The sensor was further calibrated in standard solutions that were prepared in synthetic or real urine, and the analytical response became more sensitive and stable. Compared to the literature, the detection capability of the developed device is better than most of the reported electrodes. Overall, the simplicity, low cost and good analytical performance of the BSA SPE device, prepared with positively charged binding positions, seems a suitable approach for practical application in clinical context. Further studies with real samples are required, as well as gathering with electronic-supporting devices to allow on-site readings.