959 resultados para plant-growth


Relevância:

60.00% 60.00%

Publicador:

Resumo:

依据黄土丘陵区生态修复过程中植被演替阶段与植物生长型,将抗侵蚀植物分为一年生草本植物,多年生根茎禾草植物,多年生根蘖性草本和半灌木植物、灌木植物和乔木植物5类。一年生草本植物、多年生根茎禾草植物适应土壤侵蚀环境的能力比较强,同时具有一定程度的防止土壤侵蚀的作用;灌木和乔木植物适应土壤侵蚀环境的能力比较弱,而防止土壤侵蚀的作用很强;多年生草本和半灌木植物适应土壤侵蚀环境的能力适中,而防止土壤侵蚀作用的能力优于一年生草本和多年生根茎禾草群落,但不及乔灌木群落。并提出了在天然草本植被恢复的基础上进行人工造林的相关建议。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

抗旱节水化控技术是一种很有发展前景的农业节水技术。它具有操作简便、投入少、见效快、易推广的优点 ,因而是一般常规技术所无法替代的。本文介绍了几种主要的抗旱节水化控制剂 (保水剂、土壤蒸发抑制剂、植物抗蒸腾剂、土壤结构改良剂和植物生长调节剂 )的特性及应用效果 ,并指出了该技术研究中存在的一些问题 ,以期为化学节水技术广泛应用提供理论参考。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

用盆栽对冬小麦不同生育阶段进行不同程度水分调亏试验结果表明 :拔节—孕穗期、抽穗—扬花期和灌浆—成熟 3个阶段内 RW上限为 4 0 %、5 0 %、60 %的水分亏缺均引起了产量的极显著下降 ,而且水分亏缺越严重 ,产量降低越大。在 3个生育阶段内进行 RW上限为 4 0 %的水分调亏减产幅度都很大 ,而且 3个生育阶段之间差异不明显 ;进行 5 0 %、60 %水分调亏 ,其减产程度则与生育期有关。灌浆—成熟期的减产程度大于前二个时期 ,这可能与前二个阶段复水后作物的补偿生长有关。不同生育期水分亏缺对冬小麦产量构成因素的影响也不同 ,拔节—扬花期水分亏缺主要减少了穗粒数 ,灌浆—成熟阶段的水分亏缺主要减少了千粒重

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The title compound, 2-(methoxybenzoyl)-N-phenyt-2-(1,2,4-triazol-1-yl)thioacetamide was synthesized by several reactions from 4-methoxyacetophenone, triazole and phenyl isothiocyanate. The structure was identified by elemental analysis, H-1 NMR, MS and IR. The single crystal structure of 2-(methoxybenzoyl)-N-phenyl-2-(1,2,4-triazol-1-yl)thioacetamide was determined with X-ray diffraction. The preliminary bioassays show that the title compound exhibits weak antifungal activities and plant-growth regulatory activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To understand the carbon dynamics and correlation between net ecosystem CO2 exchange and environmental conditions of alpine meadow ecosystem in the Qinghai-Tibetan Plateau, we analyzed two years (from 2002 to 2003) data measured by eddy covariance method. The results showed that in those two years the ecosystem behaved as the carbon sink and absorbed carbon dioxide 286.74 g/(m2•a) and 284.94 g/(m2•a),respectively. It suggested that there were not distinct correlations between the daily CO2 flux (net ecosystem exchange, NEE) and photosynthetic photon flux density (PPFD) and soil water content (SWC) while daily NEE was evidently corresponded to air temperature. The "turning point air temperature", was meant at that air temperature, when the increase rate of ecosystem photosynthesis (gross primary production, GPP) began to be above the increase rate of ecosystem respiration (Reco), and was 2.47 ℃ by an exponential-linear model established in the alpine meadow. Then, if the precipitation and PPFD doesnt change greatly, moreover, the alpine meadow keeps balance (not lots of variations among years, especially in plant species, plant growth), the capacity of alpine meadow ecosystem carbon sink will be enhanced when the increase of air temperature at above 2.47 ℃, and decreased when that of air temperature at below 2.47 ℃.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Through 2-3-year (2003-2005) continuous eddy covariance measurements of carbon dioxide and water vapor fluxes, we examined the seasonal, inter-annual, and inter-ecosystem variations in the ecosystem-level water use efficiency (WUE, defined as the ratio of gross primary production, GPP, to evapotranspiration, ET) at four Chinese grassland ecosystems in the Qinghai-Tibet Plateau and North China. Representing the most prevalent grassland types in China, the four ecosystems are an alpine swamp meadow ecosystem, an alpine shrub-meadow ecosystem, an alpine meadow-steppe ecosystem, and a temperate steppe ecosystem, which illustrate a water availability gradient and thus provide us an opportunity to quantify environmental and biological controls on ecosystem WUE at different spatiotemporal scales. Seasonally, WUE tracked closely with GPP at the four ecosystems, being low at the beginning and the end of the growing seasons and high during the active periods of plant growth. Such consistent correspondence between WUE and GPP suggested that photosynthetic processes were the dominant regulator of the seasonal variations in WUE. Further investigation indicated that the regulations were mainly due to the effect of leaf area index (LAI) on carbon assimilation and on the ratio of transpiration to ET (T/ET). Besides, except for the swamp meadow, LAI also controlled the year-to-year and site-to-site variations in WUE in the same way, resulting in the years or sites with high productivity being accompanied by high WUE. The general good correlation between LAI and ecosystem WUE indicates that it may be possible to predict grassland ecosystem WUE simply with LAI. Our results also imply that climate change-induced shifts in vegetation structure, and consequently LAI may have a significant impact on the relationship between ecosystem carbon and water cycles in grasslands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although studies show that grazing and browsing by herbivores have marked effects on host plants, the mechanisms remain unclear. The objective of this study is to determine the effects of sheep saliva on host plant growth. Sheep saliva was manually applied to clipped plants of two different life forms, a semi-shrub, Artemisia frigida Willd., and a herbaceous species, Leymus chinensis (Trin.) Tzevel. The results showed that sheep saliva significantly enhanced aboveground net primary productivity (ANPP) and the ratio of ANPP to belowground net primary productivity (BNPP) for both species. This indicated that sheep saliva promotes aboveground compensatory growth and allocation of photosynthate to aboveground for both plant species. Sheep saliva stimulated only tillering of L. chinensis. Regardless of saliva application, clipping significantly decreased BNPP and plant height, but significantly increased the number of branches or tillers for both plant species. The relative growth rates (RGRs) on both species were significantly greater after clipping with saliva compared with control and clipping without saliva treatments. In addition, RGR of the herbaceous species L. chinensis was faster than that of the semi-shrub A. frigida after application of saliva. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It was the objective of this study to compare the suitability of different extractants for predicting the availability of sulfur (S) in natural grassland in a sulfur response trial on three different soil types in the Inner Mongolia steppe of China. For soil analysis, seven different extractants have been employed. The inorganic SO4-S concentration was determined by ion chromatography. Additionally, in the Ca(H-2-PO4)(2) extract the total soluble S was determined employing turbidimetry. Weak salt solutions (0.15% CaCl2, Ca(H2PO4)(2), and KH2PO4) extracted similar amounts Of SO4-S. Extraction with 0.025 M KCl provided the lowest SO4-S values. Deionized water dissolved significantly more SO4-S in the control plots than most weak salt extractants. The concentration of soluble organic S decreased in the control plots after 100 days of plant growth, indicating that the organic S pool contributed significantly to the S nutrition of the forage crops. Significant relationships among the SO4-S in the soil determined in different extracts and crop yield, sulfur content in the forage, and total sulfur uptake were only found for the Ca(H2PO4)(2) extract. In general, the correlation coefficients proved to be unsatisfactory for field experimentation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of La3+ on the antioxidant enzyme activities and the relative indices of cellular damage in cucumber seedling leaves were studied. When cucumber seedlings were treated with low concentrations of LaCl3 (0.002 and 0.02 mM), peroxidase (PO) activity increased, and catalase (CAT) activity was similar to that of control leaves at 0.002 mM La3+ and increased at 0.02 mM La3+, whereas superoxide dismutase (SOD) activity did not change significantly. The increase in the contents of chlorophyll (including chlorophylls a and b), carotenoids in parallel with the decrease in the level of malondialdehyde (MDA) suggested that low concentration of La3+ promoted plant growth. However, except the increase in SOD activity at 2 mM La3+, CAT and PO activities and the contents of pigments decreased at high concentrations of La3+ (0.2 and 2 mM), leading to the increase of MDA content and the inhibition of plant growth. It is suggested that lanthanum ion is involved in the regulation of active oxygen-scavenging enzyme activities during plant growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We measured methane (CH4) emissions in the Luanhaizi wetland, a typical alpine wetland on the Qinghai-Tibetan Plateau, China, during the plant growth season (early July to mid-September) in 2002. Our aim was to quantify the spatial and temporal variation of CH4 flux and to elucidate key factors in this variation. Static chamber measurements of CH4 flux were made in four vegetation zones along a gradient of water depth. There were three emergent-plant zones (Hippuris-dominated; Scirpus-dominated; and Carex-dominated) and one submerged-plant zone (Potamogeton-dominated). The smallest CH4 flux (seasonal mean = 33.1 mg CH4 m(-2) d(-1)) was, observed in the Potamogeton-dominated zone, which occupied about 74% of the total area of the wetland. The greatest CH4 flux (seasonal mean = 214 mg CH4 m(-2) d(-1)) was observed in the Hippuris-dominated zone, in the second-deepest water area. CH4 flux from three zones (excluding the Carex-dominated zone) showed a marked diurnal change and decreased dramatically under dark conditions. Light intensity had a major influence on the temporal variation in CH4 flux, at least in three of the zones. Methane fluxes from all zones increased during the growing season with increasing aboveground biomass. CH4 flux from the Scirpus-dominated zone was significantly lower than in the other emergent-plant zones despite the large biomass, because the root and rhizome intake ports for CH4 transport in the dominant species were distributed in shallower and more oxidative soil than occupied in the other zones. Spatial and temporal variation in CH4 flux from the alpine wetland was determined by the vegetation zone. Among the dominant species in each zone, there were variations in the density and biomass of shoots, gas-transport system, and root-rhizome architecture. The CH4 flux from a typical alpine wetland on the Qinghai-Tibetan Plateau was as high as those of other boreal and alpine wetlands. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metodologia para as análises em laboratório; Produção de sideróforos; Produção de ácido indol acético (AIA); Produção de citocininas e giberelinas; Fixação assimbiotica de N2; Produção de quitinase; Producao de B-1,3-glucanase; Produção de 1-aminociclopropano-1-carboxylato deaminase; Produção de ácido cianidrico; Solubilizacao de fosfatos; Produção de pectinase; Produção de celulase; Antagonismo direto a fungos; Antagonismo indireto a fungos (compostos volateis); Antagonismo entre bacterias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three bacterial isolates, SB13 (Acinetobacter sp.), SB14 (Arthrobacter sp.) and SB15 (Bacillus sp.), were previously isolated from the rhizosphere of sugar beet (Beta vulgaris ssp. vulgaris) plants and shown to increase hatch of potato cyst nematodes in vitro. In this study, the three isolates were assayed for rhizosphere competence. Each isolate was applied to seeds at each of four concentrations (105-108 CFU ml−1) and the inoculated seeds were planted in plastic microcosms containing coarse sand. All three isolates were shown to colonise the rhizosphere, although to differing degrees, with the higher inoculation densities providing significantly better colonisation. The isolates increased sugar beet root and shoot dry weight. Isolates SB14 and SB15 were analysed for their ability to induce in vivo hatch of Globodera pallida in non-sterile soil planted with sugar beet. After 4 and 6 weeks, both isolates had induced significantly greater percentage hatch compared to controls.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plants exhibit different developmental strategies than animals; these are characterized by a tight linkage between environmental conditions and development. As plants have neither specialized sensory organs nor a nervous system, intercellular regulators are essential for their development. Recently, major advances have been made in understanding how intercellular regulation is achieved in plants on a molecular level. Plants use a variety of molecules for intercellular regulation: hormones are used as systemic signals that are interpreted at the individual-cell level; receptor peptide-ligand systems regulate local homeostasis; moving transcriptional regulators act in a switch-like manner over small and large distances. Together, these mechanisms coherently coordinate developmental decisions with resource allocation and growth.