940 resultados para pigment inhibitors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sedimentary biomarker pigments around Cochin estuary situated in the southwest coast of India were determined by HPLC. Fucoxanthin, an indicator of diatom was observed to be the most abundant carotenoid pigment in the estuary. Dinoflagellate derived carotenoid pigment peridinin was confined in the southern part of estuary and zeaxanthin pigment indicative of cyanobacteria were more found in sites influenced by anthropogenic activities. One compound having close similarity to fucoxanthin was also detected. Alloxanthin (cryptophyceae), chl b (green algae), canthaxanthin, neoxanthin, lutein and peridinin isomer were also detected by spectra and corresponding algal class were identified. The highest concentration of chl a (11.01 mg g 1) found near to the anthropogenic affected area while the lowest chl a (0.65 mg g 1) was recorded in industrial area. Degradation products of chl a, such as pheophorbide and pheophytin were observed and principal mode of mechanism of degradation were derived. Higher pheopigments content than chl a, reflects a density trapping of dead cells and early degradation of phytopigments from grazing activities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insect neuropeptide pigment-dispersing factor (PDF) is a functional ortholog of vasoactive intestinal polypeptide, the coupling factor of the mammalian circadian pacemaker. Despite of PDF's importance for synchronized circadian locomotor activity rhythms its signaling is not well understood. We studied PDF signaling in primary cell cultures of the accessory medulla, the circadian pacemaker of the Madeira cockroach. In Ca2+ imaging studies four types of PDF-responses were distinguished. In regularly bursting type 1 pacemakers PDF application resulted in dose-dependent long-lasting increases in Ca2+ baseline concentration and frequency of oscillating Ca2+ transients. Adenylyl cyclase antagonists prevented PDF-responses in type 1 cells, indicating that PDF signaled via elevation of intracellular cAMP levels. In contrast, in type 2 pacemakers PDF transiently raised intracellular Ca2+ levels even after blocking adenylyl cyclase activity. In patch clamp experiments the previously characterized types 1–4 could not be identified. Instead, PDF-responses were categorized according to ion channels affected. Application of PDF inhibited outward potassium or inward sodium currents, sometimes in the same neuron. In a comparison of Ca2+ imaging and patch clamp experiments we hypothesized that in type 1 cells PDF-dependent rises in cAMP concentrations block primarily outward K+ currents. Possibly, this PDF-dependent depolarization underlies PDF-dependent phase advances of pacemakers. Finally, we propose that PDF-dependent concomitant modulation of K+ and Na+ channels in coupled pacemakers causes ultradian membrane potential oscillations as prerequisite to efficient synchronization via resonance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intrinsic resistance to the epidermal growth factor receptor (EGFR; HER1) tyrosine kinase inhibitor (TKI) gefitinib, and more generally to EGFR TKIs, is a common phenomenon in breast cancer. The availability of molecular criteria for predicting sensitivity to EGFR-TKIs is, therefore, the most relevant issue for their correct use and for planning future research. Though it appears that in non-small-cell lung cancer (NSCLC) response to gefitinib is directly related to the occurrence of specific mutations in the EGFR TK domain, breast cancer patients cannot be selected for treatment with gefitinib on the same basis as such EGFR mutations have been reported neither in primary breast carcinomas nor in several breast cancer cell lines. Alternatively, there is a general agreement on the hypothesis that the occurrence of molecular alterations that activate transduction pathways downstream of EGFR (i.e., MEK1/MEK2 - ERK1/2 MAPK and PI-3'K - AKT growth/survival signaling cascades) significantly affect the response to EGFR TKIs in breast carcinomas. However, there are no studies so far addressing a role of EGF-related ligands as intrinsic breast cancer cell modulators of EGFR TKI efficacy. We recently monitored gene expression profiles and sub-cellular localization of HER-1/-2/-3/-4 related ligands (i.e., EGF, amphiregulin, transforming growth factor-α, ß-cellulin, epiregulin and neuregulins) prior to and after gefitinib treatment in a panel of human breast cancer cell lines. First, gefitinibinduced changes in the endogenous levels of EGF-related ligands correlated with the natural degree of breast cancer cell sensitivity to gefitinib. While breast cancer cells intrinsically resistant to gefitinib (IC50 ≥15 μM) markedly up-regulated (up to 600 times) the expression of genes codifying for HERspecific ligands, a significant down-regulation (up to 106 times) of HER ligand gene transcription was found in breast cancer cells intrinsically sensitive to gefitinib (IC50 ≤1 μM). Second, loss of HER1 function differentially regulated the nuclear trafficking of HER-related ligands. While gefitinib treatment induced an active import and nuclear accumulation of the HER ligand NRG in intrinsically gefitinib-resistant breast cancer cells, an active export and nuclear loss of NRG was observed in intrinsically gefitinib-sensitive breast cancer cells. In summary, through in vitro and pharmacodynamic studies we have learned that, besides mutations in the HER1 gene, oncogenic changes downstream of HER1 are the key players regulating gefitinib efficacy in breast cancer cells. It now appears that pharmacological inhibition of HER1 function also leads to striking changes in both the gene expression and the nucleo-cytoplasmic trafficking of HER-specific ligands, and that this response correlates with the intrinsic degree of breast cancer sensitivity to the EGFR TKI gefitinib. The relevance of this previously unrecognized intracrine feedback to gefitinib warrants further studies as cancer cells could bypass the antiproliferative effects of HER1-targeted therapeutics without a need for the overexpression and/or activation of other HER family members and/or the activation of HER-driven downstream signaling cascades

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dengue and Chikungunya viruses cause the most important arthropod-borne viral infections for humans. These viruses are predominant in tropical and subtropical regions. In addition, these viruses are predominant in tropical and subtropical regions. Dengue mortality rate is around 1.2 to 3.5% and deaths due to chikungunya fever are around 1 in 1000; however, half of chikungunya-infected patients evolve into a chronic state that can persist for months up to years. There are no antiviral drugs available for DENV and CHIKV treatment and prevention. Moreover, vector control strategies have failed so far. Thus, the development of potent inhibitors for a broad spectrum of RNA viruses is urgently needed. We established and characterized a new embryonic insect cell line from Culex quinquefasciatus mosquito. Also we established the flaviviruses and alphavirus replication, both in C6/36 and Lulo insect cell lines, as well as in Vero cell line. In addition we carried out a reference compound library and reference panel of assays and data for DENV, which provides a benchmark for further studies. During this study, a panel of 9 antiviral molecules, with proven in vitro anti-dengue virus activity and that act at different stages of the DENV life cycle, was selected. Finally, Favipiravir or T-705, was identified as inhibitor in vitro and in vivo of alphaviruses and the mutation K291R in nsP4, which is responsible of the polymerase activity, was found as the mode of action in CHIKV. Interestingly, lysine in motif F1 is also highly conserved in positive-stranded RNA viruses and this might explain the broad spectrum of T-705 antiviral activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines an experiment to determine if impairment of antioxident protective agents resulted in elevated ROS levels in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GP catalyzes the phosphorylation of glycogen to Glc-1-P. Because of its fundamental role in the metabolism of glycogen, GP has been the target for a systematic structure-assisted design of inhibitory compounds, which could be of value in the therapeutic treatment of type 2 diabetes mellitus. The most potent catalytic-site inhibitor of GP identified to date is spirohydantoin of glucopyranose (hydan). In this work, we employ MD free energy simulations to calculate the relative binding affinities for GP of hydan and two spirohydantoin analogues, methyl-hydan and n-hydan, in which a hydrogen atom is replaced by a methyl- or amino group, respectively. The results are compared with the experimental relative affinities of these ligands, estimated by kinetic measurements of the ligand inhibition constants. The calculated binding affinity for methyl-hydan (relative to hydan) is 3.75 +/- 1.4 kcal/mol, in excellent agreement with the experimental value (3.6 +/- 0.2 kcal/mol). For n-hydan, the calculated value is 1.0 +/- 1.1 kcal/mol, somewhat smaller than the experimental result (2.3 +/- 0.1 kcal/mol). A free energy decomposition analysis shows that hydan makes optimum interactions with protein residues and specific water molecules in the catalytic site. In the other two ligands, structural perturbations of the active site by the additional methyl- or amino group reduce the corresponding binding affinities. The computed binding free energies are sensitive to the preference of a specific water molecule for two well-defined positions in the catalytic site. The behavior of this water is analyzed in detail, and the free energy profile for the translocation of the water between the two positions is evaluated. The results provide insights into the role of water molecules in modulating ligand binding affinities. A comparison of the interactions between a set of ligands and their surrounding groups in X-ray structures is often used in the interpretation of binding free energy differences and in guiding the design of new ligands. For the systems in this work, such an approach fails to estimate the order of relative binding strengths, in contrast to the rigorous free energy treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycogen phosphorylase (GP) is currently exploited as a target for inhibition of hepatic glycogenolysis under high glucose conditions. Spirohydantoin of glucopyranose and N-acetyl-beta-D-glucopyranosylamine have been identified as the most potent inhibitors of GP that bind at the catalytic site. Four spirohydantoin and three beta-D-glucopyranosylamine analogs have been designed, synthesized and tested for inhibition of GP in kinetic experiments. Depending on the functional group introduced, the K(i) values varied from 16.5 microM to 1200 microM. In order to rationalize the kinetic results, we determined the crystal structures of the analogs in complex with GP. All the inhibitors bound at the catalytic site of the enzyme, by making direct and water-mediated hydrogen bonds with the protein and by inducing minor movements of the side chains of Asp283 and Asn284, of the 280s loop that blocks access of the substrate glycogen to the catalytic site, and changes in the water structure in the vicinity of the site. The differences observed in the Ki values of the analogs can be interpreted in terms of variations in hydrogen bonding and van der Waals interactions, desolvation effects, ligand conformational entropy, and displacement of water molecules on ligand binding to the catalytic site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyclin/cyclin-dependent kinase (Cdk) complexes and the Cdk inhibitors (CDKI) are crucial regulators of cell cycle progression in all eukaryotic cells. Using rat cardiac myocytes as a model system, this chapter provides a detailed account of methods that can be employed to measure both cyclin/Cdk activity in cells and the extent of CDKI inhibitory activity present in a particular cell type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platelets play a substantial role in cardiovascular disease, and for many years there has been a search for dietary components that are able to inhibit platelet function and therefore decrease the risk of cardiovascular disease. Platelets can be inhibited by alcohol, dietary fats and some antioxidants, including a group of compounds, the polyphenols, found in fruits and vegetables. A number of these compounds have been shown to inhibit platelet function both in vitro and in vivo. In the present study the effects of the hydroxycinnamates and the flavonoid quercetin on platelet activation and cell signalling in vitro were investigated. The hydroxycinnamates inhibited platelet function, although not at levels that can be achieved in human plasma by dietary intervention. However, quercetin inhibited platelet aggregation at levels lower than those previously reported. Quercetin was also found to inhibit intracellular Ca mobilisation and whole-cell tyrosine protein phosphorylation in platelets, which are both processes essential for platelet activation. The effect of polyphenols on platelet aggregation in vivo was also investigated. Twenty subjects followed a low-polyphenol diet for 3 d before and also during supplementation. All subjects were supplemented with a polyphenol-rich meal every lunchtime for 5 d. Platelet aggregation and plasma flavonols were measured at baseline and after 5 d of dietary supplementation. Total plasma flavonoids increased significantly after the dietary intervention period (P = 0.001). However, no significant changes in ex vivo platelet aggregation were observed. Further investigation of the effects of individual polyphenolic compounds on platelet function, both in vitro and in vivo, is required in order to elucidate their role in the relationship between diet and the risk of cardiovascular disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review provides a discussion of recent developments in the asymmetric hetero Diels-Alder reaction (AHDAR), with particular emphasis on the synthesis of carbohydrates, their derivatives, and inhibitors of carbohydrate processing enzymes.