968 resultados para pharmacology
Resumo:
16.1. Agents to control acidity 16.1.1 Antacids 16.1.2 Proton pump inhibitors and antibiotics for Helicobacter pylori 16.1.3 Histamine H2 receptor antagonists 16.1.4 Misoprostol 16.1.5 Sucralfate 16.2. Prokinetics and emetics 16.2.1 Introduction to prokinetics 16.2.2 Prokinetic agents 16.2.3 Emesis with cytotoxic drugs and drugs for 16.2.4 Motion sickness and drugs for 16.2.5 Drugs for post-operative emesis 16.3. Agents used for diarrhea, constipation, irritable bowel syndrome 16.3.1 Treatment for diarrhea 16.3.2 Treatment for constipation 16.3.3 Treatment for opioid-induced constipation 16.4. Drugs for inflammatory bowel disease 16.4.1 Mesalazine 16.4.2 Glucocorticoids 16.4.3 Infliximab
Resumo:
17.1 Drugs for bronchial asthma and Chronic Obstructive Pulmonary Disease (COPD) 17.1.1 Introduction to asthma 17.1.2 Introduction to COPD 17.1.3 Drug delivery by inhalation 17.1.4 Drugs to treat 17.1.4.1 β2-adrenoceptor agonists 17.1.4.2 Muscarinic receptor antagonists 17.1.4.3 Leukotriene receptor antagonists 17.1.4.4 Theophylline 17.1.4.5 Oxygen for COPD 17.1.5 Drugs to prevent asthma 31.5.1 Glucocorticoids 31.5.2 Cromolyn sodium 17.1.6 Combination to treat and prevent asthma 17.1.7 Drug for allergic asthma – omalizumab 17.1.8 Emergency treatment of asthma 17.2. Expectorants, mucolytics, cough and oxygen 17.2.1 Introduction to expectorants and mucolytics 17.2.2 Expectorants 17.2.3 Mucolytics 17.2.4 Cough 17.2.5 Oxygen 17.3. Drugs for rhinitis and rhinorrea 17.3.1 Introduction 17.3.2 Histamine and H1-receptor antagonists 17.3.3 Sympathomimetic 17.3.4 Muscarinic receptor antagonists 17.3.4 Cromolyn sodium 17.3.5 Glucocorticoids
Resumo:
18.1 Antibiotics 18.1.1 Introduction to bacteria 18.1.2 Introduction to antibiotics 18.1.3 Inhibitors of bacterial cell wall synthesis 18.1.3.1 β-Lactams 18.1.3.2 Glycopeptides 18.1.4 Inhibitors of bacterial protein synthesis 18.1.4.1 Tetracyclines 18.1.4.2 Aminoglycosides 18.1.4.3 Chloramphenicol 18.1.4.4 Macrolides 18.1.4.5 Lincosamides 18.1.4.6 Oxalazidones 18.1.5 Inhibitors of DNA synthesis 18.2. Anti-tuberculotic drugs 18.2.1 Introduction 18.2.2 Isoniazid 18.2.3 Ethambutol 18.2.4 Rifamycin 18.2.5 Pyrazinamide 18.3. Anti-viral drugs 18.3.1 Introduction to viruses 18.3.2 Drugs used to treat herpesviruses 18.3.3 Drugs used to treat the flu 18.3.4 Drugs used to treat HIV/AIDS 18.4. Antifungal drugs 18.4.1 Introduction to Fungi 18.4.2 Antifungal drugs
Resumo:
19.1 Depression and Antidepressants 19.1.1 Depression 19.1.2 Neurochemistry of Depression and the Monoamine Theory 19.1.3 Antidepressant Indications and Drug Classes 19.1.4 General Considerations with the use of Antidepressants 19.1.5 Tricyclic Antidepressants 19.1.6 Monoamine Oxidase Inhibitors 19.1.7 Selective Serotonin Reuptake Inhibitors 19.1.8 Combined Serotonin and Noradrenaline Reuptake Inhibitors 19.1.9 Long Term Adaptive Changes with Antidepressants 19.2 Psychosis, Schizophrenia, and Antipsychotics 19.2.1 Psychosis and Schizophrenia 19.2.2 Neurochemistry of Psychosis and the Dopamine Theory 19.2.3 Antipsychotic Drug Indications and Drug Classes 19.2.4 Antipsychotic Mechanisms of Action 19.2.5 Typical Antipsychotics (First Generation) 19.2.6 Atypical Antipsychotics (Second Generation) 19.3 Anxiety and Anxiolytics 19.3.1 Fear, Anxiety and Anxiety Disorders 19.3.2 Neurochemistry of Anxiety 19.3.3 Anxiolytic Drug Indications and Drug Classes 19.3.4 Benzodiazepines 19.3.5 Antidepressants 19.3.6 Buspirone
Resumo:
20.1 Epilepsy and an introduction to drugs used to treat 20.1.1 Introduction to epilepsy 20.1.2 Treatment of partial seizures 20.1.3 Treatment of generalised seizures 20.1.4 Treatment of status epilepticus 20.2 Neurodegenerative disorders; principles of treatment 20.2.1 Introduction to neurodegenerative disorders 20.2.2 Parkinson’s disease 20.2.2.1 Introduction to Parkinson’s disease 20.2.2.2 Dopaminergic system 20.2.2.3 Treatment to enhance the dopaminergic system 20.2.2.4 Treatment to inhibit the cholinergic system 20.2.3 Dementia/Alzheimer’s disease 20.2.3.1 Introduction to Alzheimer’s disease 20.2.3.2 Treatment of Alzheimer’s disease 20.2.4 Amyotrophic lateral sclerosis 43.4.1 Introduction 43.4.2 Treatment 20.3. Pain and opioid analgesics 20.3.1 Introduction to pain and analgesia 20.3.2 Introduction to opioids 20.3.3 Tolerance and physical dependence 20.3.4 Effects of opioids 20.3.5 Agonists at opioid μ receptors 20.3.6 Toxicity to opioids This section deals with the neurologic drugs. The neurologic drugs are used to treat epilepsy and neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease. The opioids for pain management are also discussed in this section.
Resumo:
21. Smoking cessation 21.1 Epidemiology of cigarette smoking 21.2 Nicotine, addiction and pharmacokinetics 21.3 Nicotine replacement therapy 21.4 Varenicline 21.5 Bupropion
Resumo:
22.1 The Control of Excitation and Inhibition 22.2 Alcohol and its Behavioural Effects 22.3 Mechanism of Alcohol Action 22.4 General Considerations with the use of Alcohol 22.5 Long Term Adaptive Changes with the use of Alcohol
Resumo:
An introduction to biologics 23.1 Introduction: Principles of biologics and their use as medicines 23.2 Protein biologics used as drugs 23.2.1 Proteins that function through enzymatic or regulatory activity. 23.2.1.1 Biologics as replacement of a deficient or abnormal protein. 23.2.1.2 Proteins that augment an existing biological process. 23.2.1.3 Proteins that provide a novel function or activity. 23.2.2. Proteins that function through specific targeting activity. 23.2.2.1. Monoclonal antibody nomenclature. 23.2.2.2. Naked monoclonal antibodies. 23.2.2.3. Conjugated monoclonal antibodies. 23.2.3. Recombinant protein vaccines.
Resumo:
An introduction to anticancer drugs 24.1 Introduction 24.2 The rationale behind anticancer drug therapy 24.3 Drugs used in cancer 24.3.1 Alkylating agents 24.3.2 Cytotoxic antibiotics 24.3.3 Antimetabolites 24.3.4 Microtubule inhibitors 24.3.5 Monoclonal antibodies 24.3.6 Steroid hormones and their antagonists 24.3.7 Other treatments
Resumo:
25. Drugs affecting blood 25.1 Introduction 25.2 Important dysfunctions of the blood system 25.3 Drugs used in to correct dysfunctions of the blood 25.3.1 Anti-thrombosis treatments 25.3.1.1 Platelet aggregation inhibitors 25.3.1.2 Anticoagulants 25.3.1.3 Thrombolytics 25.3.2 Treatments for anaemia 25.3.3 Treatments for bleeding disorders
Resumo:
26.1 Migraine 26.2 Pathogenesis of Migraine 26.3 Cortical Spreading Depression 26.4 Neurogenic Inflammation Theory 26.5 Role of 5-HT in Migraine 26.6 Acute and Prophylactic Treatment of Migraine
Resumo:
27. Drugs in pregnancy and labour 27.1 Introduction 27.2 Common complaints in pregnancy and labour and their treatments 27.2.1 Pre-eclampsia and eclampsia. 27.2.2 Suppression of early labour 27.2.3 Neonatal respiratory distress syndrome 27.2.4 Postpartum haemorrhage 27.2.5 Prolactin excess 27.2.6 Nausea
Resumo:
Indicators of mitochondrial function were studied in two different cell culture models of cis-diamminedichloroplatinum-II (CDDP) resistance: the intrinsically resistant human ovarian cancer cell line CI-80-13S, and resistant clones (HeLa-S1a and HeLa-S1b) generated by stable expression of the serine protease inhibitor—plasminogen activator inhibitor type-2 (PAI-2), in the human cervical cancer cell line HeLa. In both models, CDDP resistance was associated with sensitivity to killing by adriamycin, etoposide, auranofin, bis[1,2-bis(diphenylphosphino)ethane]gold(I) chloride {[Au(DPPE)2]Cl}, CdCl2 and the mitochondrial inhibitors rhodamine-123 (Rhl23), dequalinium chloride (DeCH), tetraphenylphosphonium (TPP), and ethidium bromide (EtBr) and with lower constitutive levels of ATP. Unlike the HeLa clones, CI-80-13S cells were additionally sensitive to chloramphenicol, 1-methyl-4-phenylpyridinium ion (MPP+), rotenone, thenoyltrifluoroacetone (TTFA), and antimycin A, and showed poor reduction of 1-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), suggesting a deficiency in NADH dehydrogenase and/or succinate dehydrogenase activities. Total platinum uptake and DNA-bound platinum were slightly lower in CI-80-13S than in sensitive cells. The HeLa-S1a and HeLa-S1b clones, on the other hand, showed poor reduction of triphenyltetrazolium chloride (TTC), indicative of low cytochrome c oxidase activity. Total platinum uptake by HeLa-S1a was similar to HeLa, but DNA-bound platinum was much lower than for the parent cell line. The mitochondria of CI-80-13S and HeLa-S1a showed altered morphology and were fewer in number than those of JAM and HeLa. In both models, CDDP resistance was associated with less platinum accumulation and with mitochondrial and membrane defects, brought about one case with expression of a protease inhibitor which is implicated in tumor progression. Such markers may identify tumors suitable for treatment with gold phosphine complexes or other mitochondrial inhibitors.
Resumo:
Regenerative medicine-based approaches for the repair of damaged cartilage rely on the ability to propagate cells while promoting their chondrogenic potential. Thus, conditions for cell expansion should be optimized through careful environmental control. Appropriate oxygen tension and cell expansion substrates and controllable bioreactor systems are probably critical for expansion and subsequent tissue formation during chondrogenic differentiation. We therefore evaluated the effects of oxygen and microcarrier culture on the expansion and subsequent differentiation of human osteoarthritic chondrocytes. Freshly isolated chondrocytes were expanded on tissue culture plastic or CultiSpher-G microcarriers under hypoxic or normoxic conditions (5% or 20% oxygen partial pressure, respectively) followed by cell phenotype analysis with flow cytometry. Cells were redifferentiated in micromass pellet cultures over 4 weeks, under either hypoxia or normoxia. Chondrocytes cultured on tissue culture plastic proliferated faster, expressed higher levels of cell surface markers CD44 and CD105 and demonstrated stronger staining for proteoglycans and collagen type II in pellet cultures compared with microcarrier-cultivated cells. Pellet wet weight, glycosaminoglycan content and expression of chondrogenic genes were significantly increased in cells differentiated under hypoxia. Hypoxia-inducible factor-3alpha mRNA was up-regulated in these cultures in response to low oxygen tension. These data confirm the beneficial influence of reduced oxygen on ex vivo chondrogenesis. However, hypoxia during cell expansion and microcarrier bioreactor culture does not enhance intrinsic chondrogenic potential. Further improvements in cell culture conditions are therefore required before chondrocytes from osteoarthritic and aged patients can become a useful cell source for cartilage regeneration.