940 resultados para patch-clamp
Resumo:
Isolated interstitial ("pacemaker") cells from rabbit urethra were examined using the perforated-patch technique. Under voltage clamp at -60 mV, these cells fired large spontaneous transient inward currents (STICs), averaging -860 pA and >1 s in duration, which could account for urethral pacemaker activity. Spontaneous transient outward currents (STOCs) were also observed and fell into two categories, "fast" (1 s in duration). The latter were coupled to STICs, suggesting that they shared the same mechanism, while the former occurred independently at faster rates. All of these currents were abolished by cyclopiazonic acid, caffeine, or ryanodine, suggesting that they were activated by Ca(2+) release. When D-myo-inositol 1,4,5-trisphosphate (IP(3))-sensitive stores were blocked with 2-aminoethoxydiphenyl borate, the STICs and slow STOCs were abolished, but the fast STOCs remained. In contrast, the fast STOCs were more nifedipine sensitive than the STICs or the slow STOCs. These results suggest that while fast STOCs are mediated by a mechanism similar to STOCs in smooth muscle, STICs and slow STOCs are driven by IP(3). These results support the hypothesis that pacemaker activity in the urethra is driven by the IP(3)-sensitive store. PMID: 11287348 [PubMed - indexed for MEDLINE]
Resumo:
The presence and biological significance of circulating glycated insulin has been evaluated by high-pressure liquid chromatography (HPLC), electrospray ionization mass spectrometry (ESI-MS), radioimmunoassay (RIA), receptor binding, and hyperinsulinemic-euglycemic clamp techniques. ESI-MS analysis of an HPLC-purified plasma pool from four male type 2 diabetic subjects (HbA(1e) 8.1 +/- 0.2%, plasma glucose 8.7 +/- 1.3 mmol/l [means +/- SE]) revealed two major insulin-like peaks with retention times of 14-16 min. After spectral averaging, the peak with retention time of 14.32 min exhibited a prominent triply charged (M+3H)(3+) species at 1,991.1 m/z, representing monoglycated insulin with an intact M-r of 5,970.3 Da. The second peak (retention time 15.70 min) corresponded to native insulin (M-r 5,807.6 Da), with the difference between the two peptides (162.7 Da) representing a single glucitol adduct (theoretical 164 Da). Measurement of glycated insulin in plasma of type 2 diabetic subjects by specific RIA gave circulating levels of 10.1 +/- 2.3 pmol/l, corresponding to -9% total insulin. Biological activity of pure synthetic monoglycated insulin (insulin B-chain Phe(1)-glucitol adduct) was evaluated in seven overnight-fasted healthy nonobese male volunteers using two-step euglycemic-hyperinsulinemic clamps (2 h at 16.6 mug (.) kg(-1) (.) min(-1), followed by 2 h at 83.0 mug (.) kg(-1) (.) min(-1); corresponding to 0.4 and 2.0 mU (.) kg(-1) (.) min(-1)). At the lower dose, the exogenons glucose infusion rates required to maintain euglycemia during steady state were significantly lower with glycated insulin (P
Resumo:
Numerical and measured results are employed at X-band to demonstrate that the electrical properties ofnematic state liquid crystal can be exploited to produce phase shifters for beam scanning printed reflectarray antennas with a tunable range greater than 180'.
Resumo:
Background: The work in this study appraised photodynamic treatment (PDT) as a treatment method for vulval intraepithelial neoplasia (VIN) using a novel bioadhesive patch to deliver aminolevulinic acid. An analysis of changes in expression of apoptotic and cell cycle proteins (p53, p21, Mdm2, Blc-2, Bax, Ki-67) in response to PDT was evaluated. Methods: PDT was performed using non-laser light, either as a one or two-cycle treatment, with clinical and pathological assessment following after 6 weeks. Twenty-three patients with 25 VIN lesions underwent 49 cycles of PDT Patches were designed to conform to uneven vulval skin and contained 38 mg cm(-2) aminolevulinic acid. Assessment was carried out at 6 weeks post-treatment. Patient-based treatment assessment, along with clinical and pathological changes, were monitored. Immunohistochemical staining was used to elucidate a possible biomolecular basis for induced cellular changes. Results: Most patients (52%) reported a symptomatic response, with normal pathology restored in 38% of lesions. The patch was easy to apply and remove, causing minimal discomfort. Fluorescence inspection confirmed protoporphyrin accumulation. Pain during implementation of PDT was problematic, necessitating some form of local analgesia. Changes in expression of cell cycle and apoptotic-related proteins suggested involvement of apoptotic pathways. Down regulation of p21 and inverse changes in Bcl-2 and Bax were key findings. Conclusion: Treatment of VIN lesions using a novel bioadhesive patch induced changes in cell cycle and apoptotic proteins in response to PDT with possible utilisation of apoptotic pathways. The efficacy of PDT in treating VIN could be improved by a better understanding of these apoptotic mechanisms, the influence of factors, such as HPV status, and of the need for effective pain management.
Resumo:
This study evaluated the clinical and histopathological responses of vulval lichen sclerosus (LS) and squamous hyperplasia (SH) to photodynamic therapy (PDT). A novel bioadhesive patch containing aminolevulinic acid (ALA) at a dose of (38 mg/cm(2)) was used to treat 10 patients before irradiation with light of 630 nm. Clinical, histopathological and pathological responses to treatment were assessed at 6 weeks post-treatment. After 17 cycles of PDT, six patients reported significant symptomatic relief and no cutaneous photosensitivity. Histopathological differences were not demonstrated, but statistically significant induction of apoptosis was seen. It can be concluded that ALA-PDT patch-based formulation is pragmatic and primarily offers symptomatic management of vulval LS and SH.
Resumo:
The design of a linearly-polarised agile antenna is presented. The antenna is fed by a quasi-lumped coupler which has the ability to tune the magnitude ratio between its two outputs from -30 dB to 15 dB by modifying the bias of two varactor diodes. In this way the relative power fed to each orthogonal port of a patch antenna can be varied. Consequently, tilt control of the radiated linearly-polarised waves is achieved over a range of 90 degrees.
Resumo:
In this communication we present a novel polarization-agile microstrip antenna design. To dynamically change the polarization state, the radiating patch is fed by a tunable quasi-lumped coupler. The whole structure can be dynamically altered to radiate electromagnetic waves with vertical linear, horizontal linear, right-handed circular or left-handed circular polarization simply by changing the operating mode of the quasi-lumped coupler. Due to its topology the coupler is simply reconfigured by switching the bias of two varactor diodes via a very simple DC bias circuitry: no additional capacitors or inductors are required. A prototype is fabricated with a 0.762-mm-thick upper layer substrate for the radiating element and a 0.130-mm-thick layer substrate for the coupler circuit, both with the same dielectric material relative permittivity of 2.22. The simulated and measured scattering parameters, the axial ratio in circular radiation-mode and the cross-polarization level in linear mode, the gain and the radiation patterns are presented. The agile polarization capabilities of this new antenna, as demonstrated in this communication, underscore its suitability for modern wireless communications in a multi-path propagation environment.
Resumo:
OBJECTIVE: To assess the applicability of photodynamic therapy (PDT) in the management of vulvodynia whereby a novel, patch-type system, loaded with 5-aminolevulinic acid (ALA), was used to administer PDT to vulvar regions displaying the characteristics of vulvodynia.
Resumo:
PURPOSE: The presence of novel KCNQ currents was investigated in guinea pig bladder interstitial cells of Cajal and their contribution to the maintenance of the resting membrane potential was assessed. MATERIALS AND METHODS: Enzymatically dispersed interstitial cells of Cajal were patch clamped with K(+) filled pipettes in voltage clamp and current clamp modes. Pharmacological modulators of KCNQ channels were tested on membrane currents and the resting membrane potential. RESULTS: Cells were stepped from -60 to 40 mV to evoke voltage dependent currents using a modified K(+) pipette solution containing ethylene glycol tetraacetic acid (5 mM) and adenosine triphosphate (3 mM) to eliminate large conductance Ca activated K channel and K(adenosine triphosphate) currents. Application of the KCNQ blockers XE991, linopirdine (Tocris Bioscience, Ellisville, Missouri) and chromanol 293B (Sigma) decreased the outward current in concentration dependent fashion. The current-voltage relationship of XE991 sensitive current revealed a voltage dependent, outwardly rectifying current that activated positive to -60 mV and showed little inactivation. The KCNQ openers flupirtine and meclofenamic acid (Sigma) increased outward currents across the voltage range. In current clamp mode XE991 or chromanol 293B decreased interstitial cell of Cajal resting membrane potential and elicited the firing of spontaneous transient depolarizations in otherwise quiescent cells. Flupirtine or meclofenamic acid hyperpolarized interstitial cells of Cajal and inhibited any spontaneous electrical activity. CONCLUSIONS: This study provides electrophysiological evidence that bladder interstitial cells of Cajal have KCNQ currents with a role in the regulation of interstitial cell of Cajal resting membrane potential and excitability. These novel findings provide key information on the ion channels present in bladder interstitial cells of Cajal and they may indicate relevant targets for the development of new therapies for bladder instability.
Resumo:
The ability to switch between propagating modes is important for body-centric applications such as medical body area networks where a single node may need to be able to optimise communications for either on-body sensor links or off-body links to the wider network. Therefore, we present a compact 2.45 GHz active mode-switching wearable antenna for both on-body and off-body wireless communications. The single-layer patch antenna was pattern-switched using shorting pins and had an impedance bandwidth of 253 MHz and 217 MHz for the on-body and off-body radiating modes, respectively. An efficiency of 57 % and 56.8 % was obtained for on-body and off-body mode respectively when placed in close proximity to a phantom that represents a muscle issue at 2.45 GHz.