1000 resultados para party formation
Resumo:
Background: EATL is a rare subtype of peripheral T-cell lymphomas characterized by primarily intestinal localization and a frequent association with celiac disease. The prognosis is considered to be poor with conventional chemotherapy. Limited data is available on the efficacy of ASCT in this lymphoma subtype. Primary objective: was to study the outcome of ASCT as a consolidation or salvage strategy for EATL. The primary endpoint was overall survival (OS) and progression-free survival (PFS). Eligible patients were > 18 years who had received ASCT between 2000-2010 for EATL that was confirmed by review of written histopathology reports, and had sufficient information on disease history and follow-up available. The search strategy used the EBMT database to identify patients potentially fulfilling the eligibility criteria. An additional questionnaire was sent to individual transplant centres to confirm histological diagnosis (histopathology report or pathology review) as well as updated follow-up data. Patients and transplant characteristics were compared between groups using X2 test or Fisher's exact test for categorical variables and t-test or Mann-Whiney U-test for continuous variables. OS and PFS were estimated using the Kaplan-Meier product-limit estimate and compared by the log-rank test. Estimates for non-relapse mortality (NRM) and relapse or progression were calculated using cumulative incidence rates to accommodate competing risk and compared to Gray's test. Results: Altogether 138 patients were identified. Updated follow-up data was received from 74 patients (54 %) and histology report from 54 patients (39 %). In ten patients the diagnosis of EATL could not be adequately verified. Thus the final analysis included 44. There were 24 males and 20 females with a median age of 56 (35-72) years at the time of transplant. Twenty-five patients (57 %) had a history of celiac disease. Disease stage was I in nine patients (21 %), II in 14 patients (33 %) and IV in 19 patients (45 %). Twenty-four patients (55 %) were in the first CR or PR at the time of transplant. BEAM was used as a high-dose regimen in 36 patients (82 %) and all patients received peripheral blood grafts. The median follow-up for survivors was 46 (2-108) months from ASCT. Three patients died early from transplant-related reasons translating into a 2-year non-relapse mortality of 7 %. Relapse incidence at 4 years after ASCT was 39 %, with no events occurring beyond 2.5 years after ASCT. PFS and OS were 54 % and 59 % at four years, respectively. There was a trend for better OS in patients transplanted in the first CR or PR compared to more advanced disease status (70 % vs. 43 %, p=0.053). Of note, patients with a history of celiac disease had superior PFS (70 % vs. 35 %, p=0.02) and OS (70 % vs. 45 %, p=0.052) whilst age, gender, disease stage, B-symptoms at diagnosis or high-dose regimen were not associated with OS or PFS. Conclusions: This study shows for the first time in a larger patient sample that ASCT is feasible in selected patients with EATL and can yield durable disease control in a significant proportion of the patients. Patients transplanted in first CR or PR appear to do better than those transplanted later. ASCT should be considered in EATL patients responding to initial therapy.
Resumo:
An area of increasingly interest for the understanding of cell signaling are the spatio-temporal aspects of the different enzymes involved in lipid mediator generation (eicosanoid-forming enzymes, phospholipases and their regulatory kinases and phosphatases) and pools of lipid precursors. The compartmentalization of signaling components within discrete and dynamic sites in the cell is critical for specificity and efficiency of enzymatic reactions of phosphorilation, enzyme activation and function. We hypothesized that lipid bodies - inducible non-membrane bound cytoplasmic lipid domains - function as specialized intracellular sites of compartmentalization of signaling with major roles in lipid mediator formation within leukocytes engaged in inflammatory process. Over the past years substantial progresses have been made demonstrating that all enzymes involved in eicosanoid synthesis localize at lipid bodies and lipid bodies are distinct sites for eicosanoid generation. Here we will review our current knowledge on the mechanisms of formation and functions of lipid bodies pertinent to inflammation.
Resumo:
BACKGROUND: Activation of innate pattern-recognition receptors promotes CD4+ T-cell-mediated autoimmune myocarditis and subsequent inflammatory cardiomyopathy. Mechanisms that counterregulate exaggerated heart-specific autoimmunity are poorly understood. METHODS AND RESULTS: Experimental autoimmune myocarditis was induced in BALB/c mice by immunization with α-myosin heavy chain peptide and complete Freund's adjuvant. Together with interferon-γ, heat-killed Mycobacterium tuberculosis, an essential component of complete Freund's adjuvant, converted CD11b(hi)CD11c(-) monocytes into tumor necrosis factor-α- and nitric oxide synthase 2-producing dendritic cells (TipDCs). Heat-killed M. tuberculosis stimulated production of nitric oxide synthase 2 via Toll-like receptor 2-mediated nuclear factor-κB activation. TipDCs limited antigen-specific T-cell expansion through nitric oxide synthase 2-dependent nitric oxide production. Moreover, they promoted nitric oxide synthase 2 production in hematopoietic and stromal cells in a paracrine manner. Consequently, nitric oxide synthase 2 production by both radiosensitive hematopoietic and radioresistant stromal cells prevented exacerbation of autoimmune myocarditis in vivo. CONCLUSIONS: Innate Toll-like receptor 2 stimulation promotes formation of regulatory TipDCs, which confine autoreactive T-cell responses in experimental autoimmune myocarditis via nitric oxide. Therefore, activation of innate pattern-recognition receptors is critical not only for disease induction but also for counterregulatory mechanisms, protecting the heart from exaggerated autoimmunity.
Resumo:
This study was designed to investigate the lifestyle and substance use habits of dance music event attendees together with their attitudes toward prevention of substance misuse, harm reduction measures and health-care resources. A total of 302 attendees aged 16-46 years (mean=22.70, S.D.=4.65) were randomly recruited as they entered dance music events. Rates for lifetime and current use (last 30 days) were particularly high for alcohol (95.3% and 86.6%, respectively), cannabis (68.8% and 53.8%, respectively), ecstasy (40.4% and 22.7%, respectively) and cocaine (35.9% and 20.7%, respectively). Several patterns of substance use could be identified: 52% were alcohol and/or cannabis only users, 42% were occasional poly-drug users and 6% were daily poly-drug users. No significant difference was observed between substance use patterns according to gender. Pure techno and open-air events attracted heavier drug users. Psychological problems (such as depressed mood, sleeping problems and anxiety attacks), social problems, dental disorders, accidents and emergency treatment episodes were strongly related to party drug use. Party drug users appeared to be particularly receptive to harm reduction measures, such as on-site emergency staff, pill testing and the availability of cool water, and to prevention of drug use provided via counseling. The greater the involvement in party drug use, the greater the need for prevention personnel to be available for counseling. General practitioners appeared to be key professionals for accessing health-care resources.
Resumo:
Several metals and metalloids profoundly affect biological systems, but their impact on the proteome and mechanisms of toxicity are not fully understood. Here, we demonstrate that arsenite causes protein aggregation in Saccharomyces cerevisiae. Various molecular chaperones were found to be associated with arsenite-induced aggregates indicating that this metalloid promotes protein misfolding. Using in vivo and in vitro assays, we show that proteins in the process of synthesis/folding are particularly sensitive to arsenite-induced aggregation, that arsenite interferes with protein folding by acting on unfolded polypeptides, and that arsenite directly inhibits chaperone activity. Thus, folding inhibition contributes to arsenite toxicity in two ways: by aggregate formation and by chaperone inhibition. Importantly, arsenite-induced protein aggregates can act as seeds committing other, labile proteins to misfold and aggregate. Our findings describe a novel mechanism of toxicity that may explain the suggested role of this metalloid in the etiology and pathogenesis of protein folding disorders associated with arsenic poisoning.
Resumo:
Comment, dans les premiers siècles de l'histoire du christianisme, se sont formés les livres du Nouveau Testament ? Une dizaine de spécialistes européens et américains abordent ce problème majeur avec un double souci : présenter au public francophone un état de la recherche et faire progresser les études par le recours à l'histoire sociale et à l'histoire des controverses. Une attention particulière est portée à des sources habituellement négligées parce qu'elles sont d'un accès difficile| il s'agit en particulier de textes orientaux (coptes, syriaques, arméniens) qui montrent que le Nouveau Testament est loin de s'être constitué de manière strictement uniforme au cours des cinq premiers siècles.
Resumo:
The membrane-bound form of Fas ligand (FasL) signals apoptosis in target cells through engagement of the death receptor Fas, whereas the proteolytically processed, soluble form of FasL does not induce cell death. However, soluble FasL can be rendered active upon cross-linking. Since the minimal extent of oligomerization of FasL that exerts cytotoxicity is unknown, we engineered hexameric proteins containing two trimers of FasL within the same molecule. This was achieved by fusing FasL to the Fc portion of immunoglobulin G1 or to the collagen domain of ACRP30/adiponectin. Trimeric FasL and hexameric FasL both bound to Fas, but only the hexameric forms were highly cytotoxic and competent to signal apoptosis via formation of a death-inducing signaling complex. Three sequential early events in Fas-mediated apoptosis could be dissected, namely, receptor binding, receptor activation, and recruitment of intracellular signaling molecules, each of which occurred independently of the subsequent one. These results demonstrate that the limited oligomerization of FasL, and most likely of some other tumor necrosis factor family ligands such as CD40L, is required for triggering of the signaling pathways.
Resumo:
Mutations designated gtaC and gtaE that affect alpha-phosphoglucomutase activity required for interconversion of glucose 6-phosphate and alpha-glucose 1-phosphate were mapped to the Bacillus subtilis pgcA (yhxB) gene. Backcrossing of the two mutations into the 168 reference strain was accompanied by impaired alpha-phosphoglucomutase activity in the soluble cell extract fraction, altered colony and cell morphology, and resistance to phages phi29 and rho11. Altered cell morphology, reversible by additional magnesium ions, may be correlated with a deficiency in the membrane glycolipid. The deficiency in biofilm formation in gtaC and gtaE mutants may be attributed to an inability to synthesize UDP-glucose, an important intermediate in a number of cell envelope biosynthetic processes.
Resumo:
Giant congenital naevi are pigmented childhood lesions that frequently lead to melanoma, the most aggressive skin cancer. The mechanisms underlying this malignancy are largely unknown, and there are no effective therapies. Here we describe a mouse model for giant congenital naevi and show that naevi and melanoma prominently express Sox10, a transcription factor crucial for the formation of melanocytes from the neural crest. Strikingly, Sox10 haploinsufficiency counteracts Nras(Q61K)-driven congenital naevus and melanoma formation without affecting the physiological functions of neural crest derivatives in the skin. Moreover, Sox10 is also crucial for the maintenance of neoplastic cells in vivo. In human patients, virtually all congenital naevi and melanomas are SOX10 positive. Furthermore, SOX10 silencing in human melanoma cells suppresses neural crest stem cell properties, counteracts proliferation and cell survival, and completely abolishes in vivo tumour formation. Thus, SOX10 represents a promising target for the treatment of congenital naevi and melanoma in human patients.