927 resultados para paramagnetic resonance
Resumo:
Objective To test the hypothesis that 12-lead ECG QRS scoring quantifies myocardial scar and correlates with disease severity in Chagas' heart disease. Design Patients underwent 12-lead ECG for QRS scoring and cardiac magnetic resonance with late gadolinium enhancement (CMR-LGE) to assess myocardial scar. Setting University of Sao Paulo Medical School, Sao Paulo, Brazil. Patients 44 Seropositive patients with Chagas' disease without a history of myocardial infarction and at low risk for coronary artery disease. Main outcome measures Correlation between QRS score, CMR-LGE scar size and left ventricular ejection fraction. Relation between QRS score, heart failure (HF) class and history of ventricular tachycardia (VT). Results QRS score correlated directly with CMR-LGE scar size (R=0.69, p<0.0001) and inversely with left ventricular ejection fraction (R=-0.54, p=0.0002), which remained significant in the subgroup with conduction defects. Patients with class II or III HF had significantly higher QRS scores than those with class I HF (5.1 +/- 3.4 vs 2.1 +/- 3.1 QRS points (p=0.002)) and patients with a history of VT had significantly higher QRS scores than those without a history of VT (5.3 +/- 3.2% vs 2.6 +/- 3.4 QRS points (p=0.02)). A QRS score >= 2 points had particularly good sensitivity and specificity (95% and 83%, respectively) for prediction of large CMR-LGE, and a QRS score >= 7 points had particularly high specificity (92% and 89%, respectively) for predicting significant left ventricular dysfunction and history of VT. Conclusions The wide availability of 12-lead ECG makes it an attractive screening tool and may enhance clinical risk stratification of patients at risk for more severe, symptomatic Chagas' heart disease.
Resumo:
Objectives: Adults with major depressive disorder (MDD) are reported to have reduced orbitofrontal cortex (OFC) volumes, which could be related to decreased neuronal density. We conducted a study on medication naive children with MDD to determine whether abnormalities of OFC are present early in the illness course. Methods: Twenty seven medication naive pediatric Diagnostic and Statistical Manual of Mental Disorders, 4(th) edition (DSM-IV) MDD patients (mean age +/- SD = 14.4 +/- 2.2 years; 10 males) and 26 healthy controls (mean age +/- SD = 14.4 +/- 2.4 years; 12 males) underwent a 1.5T magnetic resonance imaging (MRI) with 3D spoiled gradient recalled acquisition. The OFC volumes were compared using analysis of covariance with age, gender, and total brain volume as covariates. Results: There was no significant difference in either total OFC volume or total gray matter OFC volume between MDD patients and healthy controls. Exploratory analysis revealed that patients had unexpectedly larger total right lateral (F = 4.2, df = 1, 48, p = 0.05) and right lateral gray matter (F = 4.6, df = 1, 48, p = 0.04) OFC volumes compared to healthy controls, but this finding was not significant following statistical correction for multiple comparisons. No other OFC subregions showed a significant difference. Conclusions: The lack of OFC volume abnormalities in pediatric MDD patients suggests the abnormalities previously reported for adults may develop later in life as a result of neural cell loss.
Resumo:
Purpose: To evaluate patellar kinematics of volunteers Without knee pain at rest and during isometric contraction in open- and closed-kinetic-chain exercises. Methods: Twenty individuals took part in this study. All were submitted to magnetic resonance imaging (MRI) during rest and voluntary isometric contraction (VIC) in the open anti closed kinetic chain at 15 degrees, 30 degrees, and 45 degrees of knee flexion. Through MRI and using medical e-film software, the following measurements were evaluated: sulcus angle, patellar-tilt angle, and bisect offset. The mixed-effects linear model was used for comparison between knee positions, between rest and isometric contractions, and between (he exercises. Results: Data analysis revealed that the sulcus angle decreased as knee flexion increased and revealed increases with isometric contractions in both the open and closed kinetic chain for all knee-flexion angles. The patellar-tilt angle decreased with isometric contractions in both the open and closed kinetic chain for every knee position. However, in the closed kinetic chain, patellar tilt increased significantly with the knee flexed at 15 degrees. The bisect offset increased with the knee flexed at 15 degrees during isometric contractions and decreased as knee flexion increased during both exercises. Conclusion: VIC in the last degrees of knee extension may compromise patellar dynamics. On the other hand, it is possible to favor patellar stability by performing muscle contractions with the knee flexed at 30 degrees and 45 degrees in either the open or closed kinetic chain.
Resumo:
It is well known that resonance can be induced by external noise or diversity. Here we show that resonance can be induced even by a phase disorder in coupled excitable neurons with subthreshold activity. In contrast to the case of identical phase, we find that phase disorder plays an active role in enhancing neuronal activity. We also uncover that the presence of phase disorder can induce a double resonance phenomenon: phase disorder and coupling strength both can enhance neuronal firing activity. A physical theory is formulated to help understand the mechanism behind this double resonance phenomenon.
Resumo:
Shallow subsurface layers of gold nanoclusters were formed in polymethylmethacrylate (PMMA) polymer by very low energy (49 eV) gold ion implantation. The ion implantation process was modeled by computer simulation and accurately predicted the layer depth and width. Transmission electron microscopy (TEM) was used to image the buried layer and individual nanoclusters; the layer width was similar to 6-8 nm and the cluster diameter was similar to 5-6 nm. Surface plasmon resonance (SPR) absorption effects were observed by UV-visible spectroscopy. The TEM and SPR results were related to prior measurements of electrical conductivity of Au-doped PMMA, and excellent consistency was found with a model of electrical conductivity in which either at low implantation dose the individual nanoclusters are separated and do not physically touch each other, or at higher implantation dose the nanoclusters touch each other to form a random resistor network (percolation model). (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3231449]
Resumo:
We present the experimental and theoretical studies of the magnetoresistance oscillations induced by the resonance transitions of electrons between the tunnel-coupled states in double quantum wells. The suppression of these oscillations with increasing temperature is irrelevant to the thermal broadening of the Fermi distribution and reflects the temperature dependence of the quantum lifetime of electrons. The gate control of the period and amplitude of the oscillations is demonstrated.
Resumo:
We present the first measurements of the rho(770)(0),K(*)(892),Delta(1232)(++),Sigma(1385), and Lambda(1520) resonances in d+Au collisions at
Resumo:
The use of chromic materials for responsive surface-enhanced resonance Raman scattering (SERRS) based nanosensors is reported. The potential of nano-chromic SERRS is demonstrated with the use of the halochrome methyl yellow to fabricate an ultrasensitive pH optical sensor. Some of the challenges of the incorporation of chromic materials with metal nanostructures are addressed through the use of computational calculations and a comparison to measured SERRS and surface-enhanced Raman scattering (SERS) spectra is presented. A strong correlation between the measured SERRS and the medium's proton concentration is demonstrated for the pH range 2-6. The high sensitivity achieved by the use of resonance Raman conditions is shown through responsive SERRS measurements from only femtolitres of volume and with the concentration of the reporting molecules approaching the single molecule regime.
Resumo:
Study design: Evaluation of knees of tetraplegic patients who have been walking for several months with the aid of a system that involves neuromuscular stimulation, treadmill and a harness support device. Objectives: To investigate if the training program could cause knee injury to tetraplegic patients. Setting: Hospital das Clinicas - UNICAMP. Campinas-SP, Brazil. Methods: Nine patients were evaluated. Clinical exam and magnetic resonance images (MRIs) were used for evaluation. MRIs were taken before and after the training program, in a 6-month interval for each patient. There were two sessions of training every week. Each session lasted 20 min. Results: No severe clinical abnormality was observed in any patient. Mild knee injury was observed in four of nine patients studied. Conclusions: Tetraplegic patients undergoing treadmill gait training deserve a close follow-up to prevent knee injury.
Resumo:
Acoustic resonances are observed in high-pressure discharge lamps operated with ac input modulated power frequencies in the kilohertz range. This paper describes an optical resonance detection method for high-intensity discharge lamps using computer-controlled cameras and image processing software. Experimental results showing acoustic resonances in high-pressure sodium lamps are presented.
Resumo:
A nuclear magnetic resonance (NMR) spectroscopic method was validated for the quantitative determination of dimethylaminoethanol (DMAE) in cosmetic formulations. The linearity in the range from 0.5000 to 1.5000 g (DMAE salt/mass maleic acid) presents a correlation coefficient > 0.99 for all DMAE salts. The repeatability (intraday), expressed as relative standard deviation, ranged from 1.08 to 1.44% for samples and 1.31 to 1.88% for raw materials. The detection limit and quantitation limit were 0.0017 and 0.0051 g for DMAE, 0.0018 and 0.0054 g for DMAE bitartrate, and 0.0023 and 0.0071 g for DMAE acetamidobenzoate, respectively. The proposed method is simple, precise, and accurate and can be used in the quality control of raw materials and cosmetic gels containing these compounds as active substances.
Resumo:
Pharmaceuticals can exist in many solid forms, which can have different physical and chemical properties. These solid forms include polymorphs, solvates, amorphous, and hydrates. Particularly, hydration process can be quite common since pharmaceutical solids can be in contact with water during manufacturing process and can also be exposed to water during storage. In the present work, it is proved that NQR technique is capable of detecting different hydrated forms not only in the pure raw material but also in the final product (tablets), being in this way a useful technique for quality control. This technique was also used to study the dehydration process from pentahydrate to trihydrate.
Resumo:
It has been suggested that phased atomic decay in a squeezed vacuum could be detected in the fluorescence spectrum emitted from a driven two-level atom in a cavity. Recently, the existence of other very distinctive features in the fluorescence spectra arising from the nonclassical features of the squeezed vacuum has been reported. In this paper, we investigate the possibility of experimental observation of these spectra. The main obstacle to the experimentalist is ensuring an effective squeezed-vacuum-atom coupling. To overcome this problem we propose the use of a Fabry-Perot microcavity. The analysis involves a consideration of the three-dimensional nature of the electromagnetic held, and the possibility of a mismatch between the squeezed and cavity modes. The problem of squeezing bandwidths is also addressed. We show that under experimentally realistic circumstances many of the spectral anomalies predicted in free space also occur in this environment. In addition, we report large population inversions in the dressed states of the two-level atom. [S1050-2947(98)02301-4].
Resumo:
A study of the gamma-radiolysis of the commercial polymers U-polymer, UP (Unitake) and polycarbonate, PC, (Aldrich) has been undertaken using ESR spectroscopy. The G-value of radical formation at 77 K has been found to be 0.31 +/- 0.01 for UP and 0.5 +/- 0.02 for PC. By using thermal annealing and spectral subtraction, the paramagnetic species formed on irradiation has been assigned. The effect of radiation on the chemical structure of UP and PC has been investigated at ambient temperature and at 423 K. The NMR results show that a new phenol type chain end is formed in the polymers on exposure to gamma-radiation. The G-value of formation of the new phenol ends was estimated to be 0.7 for PC (423 K) and 0.4 for UP (300 K). (C) 1998 John Wiley & Sons, Ltd.
Resumo:
Cerebral responses to alternating periods of a control task and a selective letter generation paradigm were investigated with functional Magnetic Resonance Imaging (fMRI). Subjects selectively generated letters from four designated sets of six letters from the English language alphabet, with the instruction that they were not to produce letters in alphabetical order either forward or backward, repeat or alternate letters. Performance during this condition was compared with that of a control condition in which subjects recited the same letters in alphabetical order. Analyses revealed significant and extensive foci of activation in a number of cerebral regions including mid-dorsolateral frontal cortex, inferior frontal gyrus, precuneus, supramarginal gyrus, and cerebellum during the selective letter generation condition. These findings are discussed with respect to recent positron emission tomography (PET) and fMRI studies of verbal working memory and encoding/retrieval in episodic memory.