890 resultados para parallel finite-element analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate stress distribution in the hybrid layer produced by two adhesive systems using three-dimensional finite element analysis (FEA). Four FEA models (M) were developed: Mc, a representation of a dentin specimen (41 x 41 x 82 mu m) restored with composite resin, exhibiting the adhesive layer, hybrid layer (HL), resin tags, peritubular dentin, and intertubular dentin to simulate the etch-and-rinse adhesive system; Mr, similar to Mc, with lateral branches of the adhesive; Ma, similar to Mc, however without resin tags and obliterated tubule orifice, to simulate the environment for the self-etching adhesive system; Mat, similar to Ma, with tags. A numerical simulation was performed to obtain the maximum principal stress (sigma(max)). The highest sigma(max) in the HL was observed for the etch-and-rinse adhesive system. The lateral branches increased the sigma(max) in the HL. The resin tags had a little influence on stress distribution with the self-etching system. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors describe a literature revision on assessing stresses in buccomaxillary prostheses photoelasticity, finite element technique, and extensometry. They describe the techniques and the importance for use of each method in buccomaxillary prostheses with implants and the need of accomplishing more studies in this scarce literary area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A MATHEMATICA notebook to compute the elements of the matrices which arise in the solution of the Helmholtz equation by the finite element method (nodal approximation) for tetrahedral elements of any approximation order is presented. The results of the notebook enable a fast computational implementation of finite element codes for high order simplex 3D elements reducing the overheads due to implementation and test of the complex mathematical expressions obtained from the analytical integrations. These matrices can be used in a large number of applications related to physical phenomena described by the Poisson, Laplace and Schrodinger equations with anisotropic physical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a finite element numerical solution of free convection in a cavity with side walls maintained at constant but different temperatures. The predictions from the model and the method of solution were validated by comparison with the 'bench mark' solution and Vahl Davis' results and good agreement was found. The present model was used to obtain additional results over a wide range of Rayleigh number (10(3)-10(6)) and L/H ratios varying from 0.1 to 1.0. The predicted stream function patterns, temperature and velocity profiles as well as the mean Nusselt number were presented and discussed. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a numerical model to perform non-linear analysis of building floor structures is proposed. The presented model is derived from the Kirchhoff-s plate bending formulation of the boundary element method (BENI) for zoned domains, in which the plate stiffness is modified by the presence of membrane effects. In this model, no approximation of the generalized forces along the interface is required and the compatibility and equilibrium conditions along interfaces are imposed at the integral equation level. In order to reduce the number of degrees of freedom, the Navier Bernoulli hypothesis is assumed to simplify the strain field for the thin sub-regions (rectangular beams). The non-linear formulation is obtained from the linear formulation by incorporating initial internal force fields, which are approximated by using the well-known cell sub-division. Then, the non-linear solution of algebraic equations is obtained by using the concept of the consistent tangent operator. The Von Mises criterion is adopted to govern the elasto-plastic material behaviour checked at points along the plate thickness and along the rectangular beam element axes. The numerical representations are accurately obtained by either computing analytically the element integrals or performing the numerical integration accurately using an appropriate sub-elementation scheme. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work simulations of incompressible fluid flows have been done by a Least Squares Finite Element Method (LSFEM) using velocity-pressure-vorticity and velocity-pressure-stress formulations, named u-p-ω) and u-p-τ formulations respectively. These formulations are preferred because the resulting equations are partial differential equations of first order, which is convenient for implementation by LSFEM. The main purposes of this work are the numerical computation of laminar, transitional and turbulent fluid flows through the application of large eddy simulation (LES) methodology using the LSFEM. The Navier-Stokes equations in u-p-ω and u-p-τ formulations are filtered and the eddy viscosity model of Smagorinsky is used for modeling the sub-grid-scale stresses. Some benchmark problems are solved for validate the numerical code and the preliminary results are presented and compared with available results from the literature. Copyright © 2005 by ABCM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of self-adaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

About 99% of mechanical failures are consequence of the phenomena of fatigue, which consists on the progressive weakening of the resistant section of a mechanical component due to the growing of cracks caused by fluctuating loadings. A broad diversity of factors influences the fatigue life of a mechanical component, like the surface finishing, scale factors, among others, but none is as significantly as the presence of geometric severities. Stress concentrators are places where fatigue cracks have a greater probability to occur, and so on, the intuit of this work is to develop a consistent and trustfully methodology to determine the theoretical stress concentration factor of mechanical components. Copyright © 2007 SAE International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of porosities at the dentin/adhesive interface has been observed with the use of new generation dentin bonding systems. These porosities tend to contradict the concept that etching and hybridization processes occur equally and simultaneously. Therefore, the aim of this study was to evaluate the micromechanical behavior of the hybrid layer (HL) with voids based on a self-etching adhesive system using 3-D finite element (FE) analysis. Three FE models (Mr) were built: Mr, dentin specimen (41x41x82 μm) with a regular and perfect (i.e. pore-free) HL based on a self-etching adhesive system, restored with composite resin; Mp, similar to M, but containing 25% (v/v) voids in the HL; Mpp, similar to Mr, but containing 50% (v/v) voids in the HL. A tensile load (0.03N) was applied on top of the composite resin. The stress field was obtained by using Ansys Workbench 10.0. The nodes of the base of the specimen were constrained in the x, y and z axes. The maximum principal stress (σmax) was obtained for all structures at the dentin/adhesive interface. The Mpp showed the highest peak of σmax in the HL (32.2 MPa), followed by Mp (30 MPa) and Mr (28.4 MPa). The stress concentration in the peritubular dentin was high in all models (120 MPa). All other structures positioned far from voids showed similar increase of stress. Voids incorporated into the HL raised the σmax in this region by 13.5%. This behavior might be responsible for lower bond strengths of self-etching and single-bottle adhesives, as reported in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of the high values of insertion torques on the stress and strain distribution in cortical and cancellous bones. Based on tomography imaging, a representative mathematical model of a partial maxilla was built using Mimics 11.11 and Solid Works 2010 softwares. Six models were built and each of them received an implant with one of the following insertion torques: 30, 40, 50, 60, 70 or 80 Ncm on the external hexagon. The cortical and cancellous bones were considered anisotropic. The bone/implant interface was considered perfectly bonded. The numerical analysis was carried out using Ansys Workbench 10.0. The convergence of analysis (6%) drove the mesh refinement. Maximum principal stress (σ max) and maximum principal strain (ε max) were obtained for cortical and cancellous bones around to implant. Pearson's correlation test was used to determine the correlation between insertion torque and stress concentration in the periimplant bone tissue, considering the significance level at 5%. The increase in the insertion torque generated an increase in the σ max and ε max values for cortical and cancellous bone. The σmax was smaller for the cancellous bone, with greater stress variation among the insertion torques. The ε max was higher in the cancellous bone in comparison to the cortical bone. According to the methodology used and the limits of this study, it can be concluded that higher insertion torques increased tensile and compressive stress concentrations in the periimplant bone tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate stress distribution of the peri-implant bone by simulating the biomechanical influence of implants with different diameters of regular or platform switched connections by means of 3-dimensional finite element analysis. Five mathematical models of an implant-supported central incisor were created by varying the diameter (5.5 and 4.5 mm, internal hexagon) and abutment platform (regular and platform switched). For the cortical bone, the highest stress values (rmax and rvm) were observed in situation R1, followed by situations S1, R2, S3, and S2. For the trabecular bone, the highest stress values (rmax) were observed in situation S3, followed by situations R1, S1, R2, and S2. The influence of platform switching was more evident for cortical bone than for trabecular bone and was mainly seen in large platform diameter reduction.