961 resultados para orbital tumor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a mode of nude mice bearing a human colon carcinoma xenograft, the biodistribution and tumor localization of metatetrahydroxyphenylchlorin (m-THPC) coupled to polyethylene glycol (PEG) were compared with those of the free form of this photosensitizer used in photodynamic therapy (PDT). At different times after i.v. injection of both forms of 125I-labeled photosensitizer, m-THPC-PEG gave on average a 2-fold higher tumor uptake than free m-THPC. In addition, at early times after injection, m-THPC-PEG showed a 2-fold longer blood circulating half-life and a 4-fold lower liver uptake than free m-THPC. The tumor to normal tissue ratios of radioactivity concentrations were always higher for m-THPC-PEG than for free m-THPC at any time point studied from 2 to 96 hr post-injection. Significant coefficients of correlation between direct fluorescence measurements and radioactivity counting were obtained within each organ tested. Fluorescence microscopy studies showed that m-THPC-PEG was preferentially localized near the tumor vessels, whereas m-THPC was more diffusely distributed inside the tumor tissue. To verify whether m-THPC-PEG conjugate remained phototoxic in vivo, PDT experiments were performed 72 hr after injection and showed that m-THPC-PEG was as potent as free m-THPC in the induction of tumor regression provided that the irradiation does for m-THPC-PEG conjugate was adapted to a well-tolerated 2-fold higher level. The overall results demonstrate first the possibility of improving the in vivo tumor localization of a hydrophobic dye used for PDT by coupling it to PEG and second that a photosensitizer conjugated to a macromolecule can remain phototoxic in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND We studied anomalous extracellular mRNAs in plasma from patients with diffuse large B-cell lymphoma (DLBCL) and their survival implications. mRNAs studied have been reported in the literature as markers of poor (BCL2, CCND2, MYC) and favorable outcome (LMO2, BCL6, FN1) in tumors. These markers were also analyzed in lymphoma tissues to test possible associations with their presence in plasma. METHODOLOGY/PRINCIPAL FINDINGS mRNA from 42 plasma samples and 12 tumors from patients with DLBCL was analyzed by real-time PCR. Samples post-treatment were studied. The immunohistochemistry of BCL2 and BCL6 was defined. Presence of circulating tumor cells was determined by analyzing the clonality of the immunoglobulin heavy-chain genes by PCR. In DLBCL, MYC mRNA was associated with short overall survival. mRNA targets with unfavorable outcome in tumors were associated with characteristics indicative of poor prognosis, with partial treatment response and with short progression-free survival in patients with complete response. In patients with low IPI score, unfavorable mRNA targets were related to shorter overall survival, partial response, high LDH levels and death. mRNA disappeared in post-treatment samples of patients with complete response, and persisted in those with partial response or death. No associations were found between circulating tumor cells and plasma mRNA. Absence of BCL6 protein in tumors was associated with presence of unfavorable plasma mRNA. CONCLUSIONS/SIGNIFICANCE Through a non-invasive procedure, tumor-derived mRNAs can be obtained in plasma. mRNA detected in plasma did not proceed from circulating tumor cells. In our study, unfavorable targets in plasma were associated with poor prognosis in B-cell lymphomas, mainly MYC mRNA. Moreover, the unfavorable targets in plasma could help us to classify patients with poor outcome within the good prognosis group according to IPI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT Adipose tissue hypoxia and endoplasmic reticulum (ER) stress may link the presence of chronic inflammation and macrophage infiltration in severely obese subjects. We previously reported the up-regulation of TNF-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) axis in adipose tissue of severely obese type 2 diabetic subjects. OBJECTIVES The objective of the study was to examine TWEAK and Fn14 adipose tissue expression in obesity, severe obesity, and type 2 diabetes in relation to hypoxia and ER stress. DESIGN In the obesity study, 19 lean, 28 overweight, and 15 obese nondiabetic subjects were studied. In the severe obesity study, 23 severely obese and 35 control subjects were studied. In the type 2 diabetes study, 11 type 2 diabetic and 36 control subjects were studied. The expression levels of the following genes were analyzed in paired samples of sc and visceral adipose tissue: Fn14, TWEAK, VISFATIN, HYOU1, FIAF, HIF-1a, VEGF, GLUT-1, GRP78, and XBP-1. The effect of hypoxia, inflammation, and ER stress on the expression of TWEAK and Fn14 was examined in human adipocyte and macrophage cell lines. RESULTS Up-regulation of TWEAK/Fn14 and hypoxia and ER stress surrogate gene expression was observed in sc and visceral adipose tissue only in our severely obese cohort. Hypoxia modulates TWEAK or Fn14 expression in neither adipocytes nor macrophages. On the contrary, inflammation up-regulated TWEAK in macrophages and Fn14 expression in adipocytes. Moreover, TWEAK had a proinflammatory effect in adipocytes mediated by the nuclear factor-kappaB and ERK but not JNK signaling pathways. CONCLUSIONS Our data suggest that TWEAK acts as a pro-inflammatory cytokine in the adipose tissue and that inflammation, but not hypoxia, may be behind its up-regulation in severe obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, TRAIL-R1 and TRAIL-R2, induces apoptosis and activation of NF-kappaB in cultured cells. In this study, we have demonstrated differential signaling capacities by both receptors using either epitope-tagged soluble TRAIL (sTRAIL) or sTRAIL that was cross-linked with a monoclonal antibody. Interestingly, sTRAIL was sufficient for induction of apoptosis only in cell lines that were killed by agonistic TRAIL-R1- and TRAIL-R2-specific IgG preparations. Moreover, in these cell lines interleukin-6 secretion and NF-kappaB activation were induced by cross-linked or non-cross-linked anti-TRAIL, as well as by both receptor-specific IgGs. However, cross-linking of sTRAIL was required for induction of apoptosis in cell lines that only responded to the agonistic anti-TRAIL-R2-IgG. Interestingly, activation of c-Jun N-terminal kinase (JNK) was only observed in response to either cross-linked sTRAIL or anti-TRAIL-R2-IgG even in cell lines where both receptors were capable of signaling apoptosis and NF-kappaB activation. Taken together, our data suggest that TRAIL-R1 responds to either cross-linked or non-cross-linked sTRAIL which signals NF-kappaB activation and apoptosis, whereas TRAIL-R2 signals NF-kappaB activation, apoptosis, and JNK activation only in response to cross-linked TRAIL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oncogenesis is closely linked to abnormalities in cell differentiation. Notch signaling provides an important form of intercellular communication involved in cell fate determination, stem cell potential and differentiation. Here we review the role of this pathway in the integrated growth/differentiation control of the keratinocyte cell type, and the maintenance of normal skin homeostasis. In parallel with the pro-differentiation function of Notch1 in keratinocytes, we discuss recent evidence pointing to a tumor suppressor function of this gene in both mouse skin and human cervical carcinogenesis. The possibility that Notch signaling elicits signals with a duality of growth positive and negative function will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer immunosurveillance theory has emphasized the role of escape mechanisms in tumor growth. In this respect, a very important factor is the molecular characterization of the mechanisms by which tumor cells evade immune recognition and destruction. Among the many escape mechanisms identified, alterations in classical and non-classical HLA (Human Leucocyte Antigens) class I and class II expression by tumor cells are of particular interest. In addition to the importance of HLA molecules, tumor-associated antigens and accessory/co-stimulatory molecules are also involved in immune recognition. The loss of HLA class I antigen expression and of co-stimulatory molecules can occur at genetic, transcriptional and post-transcriptional levels. Epigenetic defects are involved in at least some mechanisms that preclude mounting a successful host-antitumor response involving the HLA system, tumor-associated antigens, and accessory/co-stimulatory molecules. This review summarizes our current understanding of the role of methylation in the regulation of molecules involved in the tumor immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Sevelamer is a phosphate-binder used effectively for the treatment of hyperphosphatemia in patients treated with dialysis. Objectives. To describe the safety of sevelamer in children with hyperphosphatemia secondary to tumor lysis syndrome and the serum phosphate concentrations observed following its administration. Procedure. A retrospective chart review of all children with leukemia/lymphoma diagnosed between November 2002 and April 2004 who received sevelamer during their initial admission was conducted. We monitored the effects of sevelamer on serum phosphate concentration, calcium/phosphate product and renal function at hours 24, 48, and 72 from sevelamer initiation. Results. Thirteen patients received sevelamer during the Study period. Their median age was 13 years (range 2.7-17.9) and eight were boys. Nine children had acute lymphoblastic leukemia, one had acute myeloid leukemia and 3 had non-Hodgkin's lymphoma. The most frequently used dose of sevelamer was 400 mg orally twice daily. The median duration of sevelamer therapy was 2 days (range 1 -7). Two children were excluded from the efficacy analysis due to concurrent use of dialysis. Mean serum phosphate levels decreased after sevelamer administration, in eleven patients, from a baseline 2.2 mmol/L +/- 0.4 (95% Cl, 1.7-3.1) to 1.1 mmol/L +/- 0.2 at hour 72 (95%Cl, 0.6-1.5). The only toxicity attributed to sevelamer was mild vomiting in three patients. Conclusions. Sevelamer appears to be effective and tolerable for the treatment of hyperphosphatemia associated with tumor lysis syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY The effective development of an immune response depends on the careful interplay and the regulation between innate and adaptive immunity. As the dendritic cells (DCs) are equipped with many receptors, such as Toll-like receptors, which can detect the presence of infection by recognizing different component of bacteria, fungi and even viruses, they are the among the first cells to respond to the infection. Upon pathogen challenge, the DCs interpret the innate system activation as a maturation signal, resulting in the migration of the DCS to a draining lymph node site. There, activated DCs present efficiently antigens to naïve T cells, which are in turn activated and initiate adaptive immunity. Therefore, DCs are the main connectors between innate and adaptive immune systems. In addition to be the most efficient antigen- presenting cells, DCs play a central role in the regulation of immune responses and immune tolerance. Despite extensive research, many aspects related to DC biology are still unsolved and/or controversial. The low frequency of DCs in vivo often hamper study of DC biology and in vitro-derived DCs are not suited to address certain questions, such as the development of DC. We sought of transforming in vivo the DCs through the specific expression of an oncogene, in order to obtain unlimited numbers of these cells. To achieve this goal, transgenic mouse lines expressing the SV40 Large T oncogene under the control of the CD1 1 c promoter were generated. These transgenic mice are healthy until the age of three to four months without alterations in the DC biology. Thereafter transgenic mice develop a fatal disease that shows features of a human pathology, named histiocytosis, involving DCs. We demonstrate that the disease development in the transgenic mice correlates with a massive accumulation of transformed DCs in the affected organs. Importantly, transformed DCs are immature and fully conserve their capacity to mature in antigen presenting cells. We observe hyperproliferation of transformed DCs only in the sick transgenic mice. Surprisingly, transformed DCs do not proliferate in vitro, but transfer of the transformed DCs into immunodeficient or tolerant host leads to tumor formation. Altoghether, the transgenic mouse lines we have generated represent a valuable tumor model for human histiocytosis, and provide excellent tools to study DC biology. RESUME Le développement d'une réponse immunitaire efficace dépend d'une minutieuse interaction et régulation entre l'immunité innée et adaptative. Comme les cellules dendritiques (DCs) sont équipées de nombreux récepteurs, tels que les récepteurs Toll-like, qui peuvent détecter la présence d'une infection en reconnaissant différents composants bactériens, issus de champignons ou même viraux, elles sont parmi les premières cellules à répondre à l'infection. Suite à la stimulation induite par le pathogène, les DCs interprètent l'activation du système immunitaire inné comme un signal de maturation, résultant dans la migration des DCs vers le ganglion drainant le site d'infection. Là, les DCs actives présentent efficacement des antigènes aux cellules T, qui sont à leur tour activées et initient les systèmes d'immunité adaptative. Ainsi, les DCs forment le lien principal entre les réponses immunitaires innées et adaptatives. En plus d'être les cellules présentatrices d'antigènes les plus efficaces, les DCs jouent un rôle central dans la régulation du système immunitaire et dans le phénomène de tolérance. Malgré des recherches intensives, de nombreux aspects liés à la biologie des DCs sont encore irrésolus et/ou controversés. La faible fréquence des DCs in vivo gêne souvent l'étude de la biologie de ces cellules et les DCs dérivées in vitro ne sont pas adéquates pour adresser certaines questions, telles que le développement des DCs. Afin d'obtenir des quantités illimitées de DCs, nous avons songé à transformer in vivo les DC grâce à l'expression spécifique d'un oncogène. Afin d'atteindre ce but, nous avons généré des lignées de souris transgéniques qui expriment l'oncogène SV40 Large T sous le contrôle du promoter CD1 le. Ces souris transgéniques sont saines jusqu'à l'âge de trois à quatre mois et ne présentent pas d'altération dans la biologie des DCs. Ensuite, les souris transgéniques développent une maladie présentant les traits caractéristiques d'une pathologie humaine nommée histiocytose, qui implique les DCs. Nous montrons que le développement de cette maladie corrèle avec une accumulation massive des DCs transformées dans les organes touchés. De plus, les DCs transformées sont immatures et conservent leur capacité à différencier en cellules présentatrices d'antigène. Nous observons une hyper-prolifération des DCs transformées seulement dans les souris transgéniques malades. Etonnament, les DC transformées ne prolifèrent pas in vitro, par contre, le transfert des DCs transformées dans des hôtes immuno-déficients ou tolérant conduit à la formation de tumeurs. Globalement, les lignées de souris transgéniques que nous avons générées représentent un modèle valide pour l'histiocytose humaine, et de plus, offrent d'excellents outils pour étudier la biologie des DCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé : Le virus tumoral de la glande mammaire de la souris (MMTV) est un rétrovirus provoquant le développement de tumeurs dans les glandes mammaires des souris susceptibles femelles. Au cours de son évolution, le virus s'est adapté et s'exprime dans des cellules spécialisées. Les lymphocytes B sont les premières cellules infectées et elles sont essentielles pour la propagation de l'infection aux glandes mammaires. Dans notre étude, le virus MMTV a été utilisé afin d'examiner les voies de signalisation induites par les glucocorticoïdes (dexaméthasone (dex), une hormone stéroïdienne) et le transforming growth factor-f3 (TGF-P, une cytokine), deux molécules impliquées dans l'activation de la transcription à partir du promoteur du MMTV dans les cellules B. Le TGF-P seul n'influence pas l'activité du promoteur du MMTV. Par contre, en synergie avec dex, le TGF-P provoque une super-induction de l'expression du promoteur par rapport à une stimulation par le glucocorticoïde seul. Cette super-induction est régulée par une famille de protéines, les Smads. Ainsi, dans les lymphocytes B, l'utilisation du MMTV a permis de mettre en évidence une nouvelle synergie entre les glueocortieoïdes et le TGF-p. pans ce travail, l'utilisation d'inhibiteurs pharmacologiques et de mutants « dominant-négatifs » nous a pet mis de démontrer qu'une Protéine Kinase C delta (PKC5) active est impliquée dans la transduction du signal lors de la réponse au dex ainsi que celle au TGF-P. Néanmoins, la PKC5 est régulée différemment dans chaque voie spécifique : la voie du TGF-p nécessitait l'activation du PKC5 par diacylglycerol (DAG) et la phosphorylation de tyrosines spécifiques, alors que la voie impliquant les glucocorticoïdes ne le nécessitait pas. Nous avons aussi démontré qu'une tyrosine kinase de la famille Src est responsable de la phosphorylation des tyrosines sur la PKC5. Les essais de kinase in vitro nous ont permis de découvrir que plusieurs Src kinases peuvent phosphoryler la PKC6 dans les cellules B et qu'elles étaient constitutivement actives. Enfin, nous avons montré qu'il existe une interaction protéine - protéine induite par dex, entre le récepteur aux glucocorticoïdes (GR) et la PKC5 dans les cellules B, une association qui n'a pas été démontrée auparavant. Par ailleurs, nous avons analysé les domaines d'interactions entre PKC5 et GR en utilisant les essais de «GST pull-down». Nos résultats montrent que le domaine régulateur de la PKC5 et celui qui interagit avec l'ADN du GR sont impliqués. En résumé, nous avons trouvé que dans une lignée lymphocytaire B, le virus MMTV utilise des mécanismes pour réguler à la fois la transcription et la voie de signalisation qui sont différents de ceux utilisés dans les cellules mammaires épithéliales et les fibroblastes. Nos découvertes pourraient être utilisées comme modèles pour l'étude de gènes cellulaires impliqués dans des processus tels qu'inflammation, immunité ou cancérogénèse. Summary: Mouse Mammary Tumor Virus (MMTV) is a retrovirus that causes tumors in the mammary glands of susceptible female mice and has adapted evolutionarily to be expressed in specialized cells. The B lymphocytes are the first cells to be infected by the MMTV and are essential for the spread of infection to the mammary glands. Here, we used the MMTV as a model system to investigate the signalling cascade induced by giucocorticoids (dexamethasone, "dex", a steroid hormone), and by Transforming Growth Factor-beta (TGF-P, a cytokine) leading to its transcriptional activation in B lymphocytes. By itself, TGF-I3 does not affect the basal activity of the MMTV promoter. However, TGF-13 significantly increases glucocorticoid-induced expression, through its effectors, the Smad factors. Thus, MMTV in B cells demonstrates a novel synergism between glucocorticoids and TGF-16. In this thesis project, we present evidence, based on the use of pharmacological inhibitors and of dominant-negative mutants, that an active Protein Kinase C delta (PKC6) is required as a signal transducer for the dex response and for the TGF-P superinduction as well. The PKC6 is differentially regulated in each specific pathway: whereas the TGF-13 superinduction required PKC6 to be activated by diacylglycerol (DAG) and to be phosphorylated at specific tyrosine residues, the glueocorticoid-induced pathway did not. We also showed that a protein tyrosine kinase of the Src family is responsible for the phosphorylation of tyrosines on PKC6. By performing in vitro kinase assays, we found that several Src kinases of B cells were able to phosphorylate PKC6 and that they were constitutively active. Finally, we demonstrate a dex-dependent functional protein-protein interaction between the glucocorticoid receptor (GR) and PKC6 in B cells, an association that has not been previously described. We further analysed the interacting domains of PKG6 and GR using in vitro GST pull-down assays, whereby the regulatory domain of PKC6 and the extended DNA-binding domain of the GR were involved. In summary, we found that in B-lymphoid cell lines, MMTV uses novel mechanisms of transcriptional control and signal transduction that are different from those at work in mammary epithelial or fibroblastic cells. These findings will be used as model for cellular genes involved in cellular processes such as immune functions, inflammation, or oncogenic transformation that may have a similar pattern of regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Cancer is a leading cause of morbidity and mortality in Western countries (as an example, colorectal cancer accounts for about 300'000 new cases and 200'000 deaths each year in Europe and in the USA). Despite that many patients with cancer have complete macroscopic clearance of their disease after resection, radiotherapy and/or chemotherapy, many of these patients develop fatal recurrence. Vaccination with immunogenic peptide tumor antigens has shown encouraging progresses in the last decade; immunotherapy might therefore constitute a fourth therapeutic option in the future. We dissect here and critically evaluate the numerous steps of reverse immunology, a forecast procedure to identify antigenic peptides from the sequence of a gene of interest. Bioinformatic algorithms were applied to mine sequence databases for tumor-specific transcripts. A quality assessment of publicly available sequence databanks allowed defining strengths and weaknesses of bioinformatics-based prediction of colon cancer-specific alternative splicing: new splice variants could be identified, however cancer-restricted expression could not be significantly predicted. Other sources of target transcripts were quantitatively investigated by polymerase chain reactions, as cancer-testis genes or reported overexpressed transcripts. Based on the relative expression of a defined set of housekeeping genes in colon cancer tissues, we characterized a precise procedure for accurate normalization and determined a threshold for the definition of significant overexpression of genes in cancers versus normal tissues. Further steps of reverse immunology were applied on a splice variant of the Melan¬A gene. Since it is known that the C-termini of antigenic peptides are directly produced by the proteasome, longer precursor and overlapping peptides encoded by the target sequence were synthesized chemically and digested in vitro with purified proteasome. The resulting fragments were identified by mass spectroscopy to detect cleavage sites. Using this information and based on the available anchor motifs for defined HLA class I molecules, putative antigenic peptides could be predicted. Their relative affinity for HLA molecules was confirmed experimentally with functional competitive binding assays and they were used to search patients' peripheral blood lymphocytes for the presence of specific cytolytic T lymphocytes (CTL). CTL clones specific for a splice variant of Melan-A could be isolated; although they recognized peptide-pulsed cells, they failed to lyse melanoma cells in functional assays of antigen recognition. In the conclusion, we discuss advantages and bottlenecks of reverse immunology and compare the technical aspects of this approach with the more classical procedure of direct immunology, a technique introduced by Boon and colleagues more than 10 years ago to successfully clone tumor antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Diffusion-weighted magnetic resonance imaging (MRI) is increasingly being used for assessing the treatment succes in oncology, but the real clinical value needs to evaluated by comparison with other, already established, metabolic imaging techniques. PURPOSE: To prospectively evaluate the clinical potential of diffusion-weighted MRI with apparent diffusion coefficient (ADC) mapping for gastrointestinal stromal tumor (GIST) response to targeted therapy compared with 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). MATERIAL AND METHODS: Eight patients (mean age, 56 ± 11 years) known to have metastatic GIST underwent 18F-FDG PET/CT and MRI (T1Gd, DWI [b = 50,300,600], ADC mapping) simultaneously, before and after change in targeted therapy. MR and PET/CT examinations were first analyzed blindly. Second, PET/CT images were co-registered with T1Gd-MR images for lesion detection. Only 18F-FDG avid lesions were considered. Maximum standardized uptake value (SUVmax) and the corresponding minimum ADCmin were measured for the six largest lesions per patient, if any, on baseline and follow-up examinations. The relationship between changes in SUVmax and ADCmin was analyzed (Spearman's correlation). RESULTS: Twenty-four metastases (12 hepatic, 12 extra-hepatic) were compared on PET/CT and MR images. SUVmax decreased from 7.7 ± 8.1 g/mL to 5.5 ± 5.4 g/mL (P = 0.20), while ADCmin increased from 1.2 ± 0.3 × 10(-3)mm(2)/s to 1.5 ± 0.3 × 10(-3)mm(2)/s (P = 0.0002). There was a significant association between changes in SUVmax and ADCmin (rho = - 0.62, P = 0.0014), but not between changes in lesions size (P = 0.40). CONCLUSION: Changes in ADCmin correlated with the response of 18F-FDG avid GIST to targeted therapy. Thus, diffusion-weighted MRI may represent a radiation-free alternative for follow-up treatment for metastatic GIST patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Persistence of anti-tumor necrosis factor (TNF) therapy in rheumatoid arthritis (RA) is an overall marker of treatment success. OBJECTIVE To assess the survival of anti-TNF treatment and to define the potential predictors of drug discontinuation in RA, in order to verify the adequacy of current practices. DESIGN An observational, descriptive, longitudinal, retrospective study. SETTING The Hospital Clínico Universitario de Valladolid, Valladolid, Spain. PATIENTS RA patients treated with anti-TNF therapy between January 2011 and January 2012. MEASUREMENTS Demographic information and therapy assessments were gathered from medical and pharmaceutical records. Data is expressed as means (standard deviations) for quantitative variables and frequency distribution for qualitative variables. Kaplan-Meier survival analysis was used to assess persistence, and Cox multivariate regression models were used to assess potential predictors of treatment discontinuation. RESULTS In total, 126 treatment series with infliximab (n = 53), etanercept (n = 51) or adalimumab (n = 22) were administered to 91 patients. Infliximab has mostly been used as a first-line treatment, but it was the drug with the shortest time until a change of treatment. Significant predictors of drug survival were: age; the anti-TNF agent; and the previous response to an anti-TNF drug. LIMITATION The small sample size. CONCLUSION The overall efficacy of anti-TNF drugs diminishes with time, with infliximab having the shortest time until a change of treatment. The management of biologic therapy in patients with RA should be reconsidered in order to achieve disease control with a reduction in costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic combinatorial peptide libraries in positional scanning format (PS-SCL) have recently emerged as a useful tool for the analysis of T cell recognition. This includes identification of potentially cross-reactive sequences of self or pathogen origin that could be relevant for the understanding of TCR repertoire selection and maintenance, as well as of the cross-reactive potential of Ag-specific immune responses. In this study, we have analyzed the recognition of sequences retrieved by using a biometric analysis of the data generated by screening a PS-SCL with a tumor-reactive CTL clone specific for an immunodominant peptide from the melanocyte differentiation and tumor-associated Ag Melan-A. We found that 39% of the retrieved peptides were recognized by the CTL clone used for PS-SCL screening. The proportion of peptides recognized was higher among those with both high predicted affinity for the HLA-A2 molecule and high predicted stimulatory score. Interestingly, up to 94% of the retrieved peptides were cross-recognized by other Melan-A-specific CTL. Cross-recognition was at least partially focused, as some peptides were cross-recognized by the majority of CTL. Importantly, stimulation of PBMC from melanoma patients with the most frequently recognized peptides elicited the expansion of heterogeneous CD8(+) T cell populations, one fraction of which cross-recognized Melan-A. Together, these results underline the high predictive value of PS-SCL for the identification of sequences cross-recognized by Ag-specific T cells.