580 resultados para oncogene
Resumo:
Translationally controlled tumour protein (TCTP) is a highly conserved protein present in all eukaryotic organisms. Various cellular functions and molecular interactions have been ascribed to this protein, many related to its growth-promoting and antiapoptotic properties. TCTP levels are highly regulated in response to various cellular stimuli and stresses. We have shown recently that the double-stranded RNA-dependent protein kinase, PKR, is involved in translational regulation of TCTP. Here we extend these studies by demonstrating that TCTP is downregulated in response to various proapoptotic treatments, in particular agents that induce Ca++ stress, in a PKR-dependent manner. This regulation requires phosphorylation of protein synthesis factor eIF2α. Since TCTP has been characterized as an antiapoptotic and Ca++-binding protein, we asked whether it is involved in protecting cells from Ca++-stress-induced apoptosis. Overexpression of TCTP partially protects cells against thapsigargin-induced apoptosis, as measured using caspase-3 activation assays, a nuclear fragmentation assay, using fluorescence-activated cell sorting analysis, and time-lapse video microscopy. TCTP also protects cells against the proapoptotic effects of tunicamycin and etoposide, but not against those of arsenite. Our results imply that cellular TCTP levels influence sensitivity to apoptosis and that PKR may exert its proapoptotic effects at least in part through downregulation of TCTP via eIF2α phosphorylation.
Resumo:
Tumor necrosis factor-related apoptosis-inducing ligand-TNFSF10 (TRAIL), a member of the TNF-alpha family and a death receptor ligand, was shown to selectively kill tumor cells. Not surprisingly, TRAIL is downregulated in a variety of tumor cells, including BCR-ABL-positive leukemia. Although we know much about the molecular basis of TRAIL-mediated cell killing, the mechanism responsible for TRAIL inhibition in tumors remains elusive because (a) TRAIL can be regulated by retinoic acid (RA); (b) the tumor antigen preferentially expressed antigen of melanoma (PRAME) was shown to inhibit transcription of RA receptor target genes through the polycomb protein, enhancer of zeste homolog 2 (EZH2); and (c) we have found that TRAIL is inversely correlated with BCR-ABL in chronic myeloid leukemia (CML) patients. Thus, we decided to investigate the association of PRAME, EZH2 and TRAIL in BCR-ABL-positive leukemia. Here, we demonstrate that PRAME, but not EZH2, is upregulated in BCR-ABL cells and is associated with the progression of disease in CML patients. There is a positive correlation between PRAME and BCR-ABL and an inverse correlation between PRAME and TRAIL in these patients. Importantly, knocking down PRAME or EZH2 by RNA interference in a BCR-ABL-positive cell line restores TRAIL expression. Moreover, there is an enrichment of EZH2 binding on the promoter region of TRAIL in a CML cell line. This binding is lost after PRAME knockdown. Finally, knocking down PRAME or EZH2, and consequently induction of TRAIL expression, enhances Imatinib sensibility. Taken together, our data reveal a novel regulatory mechanism responsible for lowering TRAIL expression and provide the basis of alternative targets for combined therapeutic strategies for CML. Oncogene (2011) 30, 223-233; doi:10.1038/onc.2010.409; published online 13 September 2010
Resumo:
Fibroblast growth factor 2 (FGF2) is considered to be a bona fide oncogenic factor, although results from our group and others call this into question. Here, we report that exogenous recombinant FGF2 irreversibly inhibits proliferation by inducing senescence in Ras-dependent malignant mouse cells, but not in immortalized nontumorigenic cell lines. We report the following findings in K-Ras-dependent malignant YI adrenocortical cells and H-Ras V12-transformed BALB-3T3 fibroblasts: (a) FGF2 inhibits clonal growth and tumor onset in nude and immunocompetent BALB/c mice, (b) FGF2 irreversibly blocks the cell cycle, and (c) FGF2 induces the senescence-associated -galactosidase with no accompanying signs of apoptosis or necrosis. The tyrosine kinase inhibitor PD173074 completely protected malignant cells from FGF2. In Yl adrenal cells, reducing the constitutively high levels of K-Ras-GTP using the dominant-negative RasN17 mutant made cells resistant to FGF2 cytotoxicity. In addition, transfection of the dominant-negative RhoA-N19 into either YI or 3T3-B61 malignant cell lines yielded stable clonal transfectants that were unable to activate RhoA and were resistant to the FGF2 stress response. We conclude that in Rasdependent malignant cells, FGF2 interacts with its cognate receptors to trigger a senescence-like process involving RboAGTP. Surprisingly, attempts to select FGF2-resistant cells from the Yl and 3T3-B61 cell lines yielded only rare clones that (a) had lost the overexpressed ras oncogene, (b) were dependent on FGF2 for proliferation, and (c) were poorly tumorigenic. Thus, FGF2 exerted a strong negative selection that Rasdependent malignant cells could rarely overcome.
Resumo:
The neurohypophyseal hormone arginine vasopressin (AVP) is a classic mitogen in many cells. In K-Ras-dependent mouse Y1 adrenocortical malignant cells, AVP elicits antagonistic responses such as the activation of the PKC and the ERK1/2 mitogenic pathways to down-regulate cyclin D1 gene expression, which induces senescence-associated beta-galactosidase (SA-beta Gal) and leads to cell cycle arrest. Here, we report that in the metabolic background of Y1 cells, PKC activation either by AVP or by PMA inhibits the PI3K/Akt pathway and stabilises the p27(Kip1) protein even in the presence of the mitogen fibroblast growth factor 2 (FGF2). These results suggest that p27(Kip1) is a critical signalling node in the mechanisms underlying the survival of the Y1 cells. In Y1 cells that transiently express wild-type p27(Kip1), AVP caused a severe reduction in cell survival, as shown by clonogenic assays. However, AVP promoted the survival of Y1 cells transiently expressing mutant p27-S10A or mutant p27-T187A, which cannot be phosphorylated at Ser10 and Thr187, respectively. In addition, PKC activation by PMA mimics the toxic effect caused by AVP in Y1 cells, and inhibition of PKC completely abolishes the effects caused by both PMA and AVP in clonogenic assays. The vulnerability of Y1 cells during PKC activation is a phenotype conditioned upon K-ras oncogene amplification because K-Ras down-regulation with an inducible form of the dominant-negative mutant H-RasN17 has resulted in Y1 cells that are resistant to AVP`s deleterious effects. These data show that the survival destabilisation of K-Ras-dependent Y1 malignant cells by AVP requires large quantities of the p27(Kip1) protein as well as phosphorylation of the p27(Kip1) protein at both Ser10 and Thr187. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Acute expression of E7 oncogene from human papillomavirus (HPV) 16 or HPV18 is sufficient to overcome tumor necrosis factor (TNF)-alpha cytostatic effect on primary human keratinocytes. In the present study, we investigated the molecular basis of E7-induced TNF resistance through a comparative analysis of the effect of this cytokine on the proliferation and global gene expression of normal and E7-expressing keratinocytes. Using E7 functional mutants, we show that E7-induced TNF resistance correlates with its ability to mediate pRb degradation and cell transformation. On the other hand, this effect does not depend on E7 sequences required to override DNA damage-induced cell cycle arrest or extend keratinocyte life span. Furthermore, we identified a group of 66 genes whose expression pattern differs between normal and E7-expressing cells upon cytokine treatment. These genes are mainly involved in cell cycle regulation suggesting that their altered expression may contribute to sustained cell proliferation even in the presence of a cytostatic stimulus. Differential expression of TCN1 (transcobalamin I), IFI44 (Interferon-induced protein 44), HMGB2 (high-mobility group box 2) and FUS [Fusion (involved in t(12; 16) in malignant liposarcoma)] among other genes were further confirmed by western-blot and/or real-time polymerase chain reaction. Moreover, FUS upregulation was detected in HPV-positive cervical high-grade squamous intraepithelial lesions when compared with normal cervical tissue. Further evaluation of the role of such genes in TNF resistance and HPVassociated disease development is warranted.
Resumo:
A incidência de adenocarcinoma de esôfago e cárdia tem aumentado nas últimas décadas por razões ainda não conhecidas. São doenças da civilização ocidental. A incidência de adenocarcinoma de esôfago e carcinoma de cárdia ultrapassou a de carcinoma epidermóide de esôfago. O desenvolvimento da biologia molecular e descoberta de oncogenes e genes supressores de tumores permitiu novos achados e melhor entendimento das características moleculares dos carcinomas de esôfago e cárdia. Novos genes envolvidos em ciclo celular, apoptose e reparo de DNA são agora alvo importante de estudos da patogênese destes tumores. HER-2/neu é um oncogene expresso in diversas neoplasias e relacionado à pior prognóstico. P53 é igualmente importante estando mutado em 50%-70% das neoplasias sólidas com implicações clínicas para muitos tumores. Este trabalho determina a frequência de p53 e HER-2/neu através de imunohistoquímica utilizando anticorpos policlonais e monoclonais DAKO anti-HER-2/neu e p53 respectivamente. Foram selecionados 22 casos de adenocarcinoma de esôfago e carcinoma de cárdia do departamento de cirurgia. HER-2/neu foi positivo em 47.7% dos casos, média entre dois observadores. P53 foi positivo em 36.6% dos casos. A correlação entre os escores de HER-2/neu e p53 foi estabelecida usando o coeficiente de correlação de Spearman que mostrou um resultado negativo –0.27 para o primeiro observador que não foi significante. Para o segundo observador, a correlação foi a mesma -0.27 e não significante, mostrando que o aumento na expressão de HER-2/neu não está relacionada com aumento de expressão de p53. Nós concluímos que a expressão de HER-2/neu neste grupo de neoplasias, necessita de investigações futuras e que mesmo estando alterado com muitos outros oncogenes em outros trabalhos, p53 não está correlacionado com aumento de expressão de HER-2/neu nesta série de casos.
Resumo:
Mutations on TP53 gene are common in human cancer but not in cervical cancer where they are rarely found and the inactivation and degradation of p53 protein are attributed to the action of E6 viral oncogene from high risk human papillomavirus (HPV). Analysis of cervical cancer cell lines suggests that HPV negative samples shows mutation on TP53, but clinical approaches didn t confirmed this hypothesis. However, in most TP53 mutations studies on cervical cancer, only the exons 5 to 8 were analyzed. Approximately 90% of mutations described are on this region. Recent studies on several cancer suggests that mutation frequency in the other exons must be considered. The aim of this work was to verify whether mutations on coding and non-coding regions occur in cancer tissue from cervical cancer in patients from Rio Grande do Norte using Denaturing Gradient Gel Electrophoresis (DGGE) as screening tool. Exons 8 to 11 were analyzed including some introns from 80 tumor samples and 8 peripheral blood samples from healthy women. DNA were submitted to PCR using primers with GC clamp on the end of one of them. The results were observed for each region after DGGE and silver staining. It was observed no amplified fragment with different migration profile from those obtained from DNA of peripheral blood. These results agree with those from literature where TP53 mutations in cervical cancer have been described in a very low frequency
Resumo:
OBJETIVOS: Alterações genéticas são relacionadas à gênese e progressão do câncer. Neoplasias de vários órgãos expressam o oncogene c-erbB-2. Nas proliferações intraductais da mama tem sido avaliado como fator de risco para o desenvolvimento de câncer. Foram avaliadas a imunoexpressão do c-erbB-2 em lesões epiteliais proliferativas intraductais e as possíveis correlações com características anatomopatológicas do carcinoma ductal in situ (CDIS). MÉTODOS: Foi utilizado material de arquivo, amostras teciduais fixadas em formalina e incluídas em blocos de parafina de 88 mulheres. Destas, 51 com CDIS e 37 com hiperplasia ductal sem atipias (HDT). A idade variou de 35 a 76 anos. Revisados todos os casos, verificou-se: o grau nuclear, a presença de necrose, o subtipo histológico predominante e sua extensão. Obteve-se material suficiente para o estudo imunohistoquímico do c-erbB-2 de 84 sujeitos do estudo. RESULTADOS: Não foi observada a expressão do oncogene nas hiperplasias sem atipias e nos tecidos adjacentes a todas amostras teciduais. A expressão do c-erbB-2 foi verificada em nove (19,1%) dos CDIS (p= 0,0001). A imunoexpressão não se relacionou à extensão das lesões. A imunoexpressão do c-erbB-2 no CDIS correlacionou-se com subtipo histológico (p=0,019), com a presença de necrose (p=0,0066), com o grau nuclear (p=0,0084) e com a Classificação de Van Nuys (p=0,039). CONCLUSÕES: A expressão do c-erbB-2 foi estatisticamente significante nas lesões proliferativas de risco (CDIS) e correlacionou-se com características histopatológicas: alto grau nuclear, presença de necrose, subtipo comedo. Não houve expressão nas hiperplasias sem atipias e tecidos adjacentes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Head and neck cancer remains a morbid and often fatal disease and at the present time few effective molecular markers have been identified. The purpose of the present work was to identify new molecular markers for head and neck squamous cell carcinoma (HNSCC). We applied methylation-sensitive arbitrarily primed PCR (MS/APPCR) to isolate sequences differentially methylated in HNSCC. The most frequently hypermethylated fragment we found maps close to a cytosine guanine dinucleotide (CpG) island on chromosome 9q33.2, and hypermethylation of this CpG island was associated with transcriptional silencing of an alternative transcript of the LHX6 gene. Using combined bisulfite restriction analysis (COBRA), hypermethylation of this fragment was detected in 13 of 14 (92.8%) HNSCC cell lines studied and 21 of 32 (65.6%) primary tumors, whereas little or no methylation was seen in 10 normal oral mucosa samples. We extended this investigation to other cancer cell lines and methylation was found in those derived from colon, breast, leukemia and lung, and methylation was also found in 12/14 primary colon tumors. These findings suggest that differentially methylated (DIME)-6 hypermethylation is a good cancer marker in HNSCC as well as in other kinds of neoplasias and confirm the importance of searching for markers of epigenetic dysregulation in cancer.
Resumo:
A proliferação da célula tiroideana normal é regulada por fatores de crescimento estimuladores e inibidores, que atuam através de seus receptores de membrana e, subseqüentemente, através de transdutores citoplasmáticos. Na glândula normal adulta, o equilíbrio de sinais é tal que a proliferação é mínima, enquanto nas neoplasias o crescimento resulta de um distúrbio irreversível desse equilíbrio. Apesar do número de moléculas envolvidas nesse processo ser grande, apenas um pequeno subgrupo parece estar envolvido na tumorigênese tiroideana. Tais proteínas são codificadas pelos genes RAS, RET, NTRK1 e TP53. O transdutor de sinais ras é ativado por mutações em ponto e constitui uma alteração genética precoce nos tumores com histologia folicular. Os genes dos receptores de crescimento RET e NTRK1 são alterados por rearranjos cromossômicos do tipo translocação ou inversão nos carcinomas papilares e por mutações em ponto nos medulares. As alterações do gene TP53, por sua vez, têm sido observadas em carcinomas tiroideanos pobremente diferenciados e na maioria dos indiferenciados, o que sugere sua participação na progressão dessas lesões. O modelo molecular da carcinogênese tiroideana, embora ainda incompleto, pode fornecer instrumentos importantes para o diagnóstico diferencial e para o desenvolvimento de novas técnicas terapêuticas nesse grupo de neoplasias.
Resumo:
Quantitative real time PCR was performed on genomic DNA from 40 primary oral carcinomas and the normal adjacent tissues. The target genes ECGFB, DIA1, BIK, and PDGFB and the microsatellite markers D22S274 and D22S277, mapped on 22q13, were selected according to our previous loss of heterozygosity findings in head and neck tumors. Quantitative PCR relies on the comparison of the amount of product generated from a target gene and that generated from a disomic reference gene (GAPDH-housekeeping gene). Reactions have been performed with normal control in triplicates, using the 7700 Sequence Detection System (PE Applied Biosystems). Losses in the sequences D22S274 (22q13.31) and in the DIA1 (22q13.2-13.31) gene were detected in 10 out of 40 cases (25%) each. Statistically significant correlations were observed for patients with relative copy number loss of the marker D22S274 and stages T3-T4 of disease (P=0.025), family history of cancer (P = 0.001), and death (P = 0.021). Relative copy number loss involving the DIA1 gene was correlated to family history of cancer (P<0.001), death (P=0.002), and consumption of alcohol (P=0.026). Log-rank test revealed a significant decrease in survival (P=0.0018) for patients with DIA1 gene loss. Relative copy number losses detected in these sequences may be related to disease progression and a worse prognosis in patients with oral cancer.
Resumo:
Tamoxifen was proven to reduce the incidence of breast cancer by 49% in women at increased risk of the disease in the Breast Cancer Prevention Trial. In order to identify potential candidates to explain the preventive effect induced by tamoxifen on breast cancer, normal breast tissue obtained from 42 fibroadenoma patients, randomly assigned to receive placebo or tamoxifen, was analyzed by the reverse Northern blot and RT-PCR techniques. The cDNA fragments used on Northern blot membranes were generated by the Human Cancer Genome Project funded by the Ludwig Institute for Cancer Research and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil). Total RNA was obtained from normal breast tissue from patients with clinical, cytological and ultrasound diagnosis of fibroadenoma. After a 50-day treatment with tamoxifen (10 or 20 mg/day) or placebo, normal breast tissue adjacent to the tumor was collected during lumpectomy with local anesthesia. One differentially expressed gene, Calcium/calmodulin-dependent protein kinase II (CaMKII), was found to be down-regulated during TAM treatment. CaMKII is an ubiquitous serine/threonine protein kinase that has been implicated in the diverse effects of hormones utilizing Ca2+ as a second messenger as well as in c-fos activation. These results indicate that the down-regulation of CaMKII induced by TAM might represent alternative or additional mechanisms of the action of this drug on cell cycle control and response to hormones in normal human breast tissue.
Resumo:
Moderate amounts of alcohol intake have been reported to have a protective effect on the cardiovascular system and this may involve enhanced insulin sensitivity. We established an animal model of increased insulin sensitivity by low ethanol consumption and here we investigated metabolic parameters and molecular mechanisms potentially involved in this phenomenon. For that, Wistar rats have received drinking water either without (control) or with 3% ethanol for four weeks. The effect of ethanol intake on insulin sensitivity was analyzed by insulin resistance index (HOMA-IR), intravenous insulin tolerance test (IVITT) and lipid profile. The role of liver was investigated by the analysis of insulin signaling pathway, GLUT2 gene expression and tissue glycogen content. Rats consuming 3% ethanol showed lower values of HOMA-IR and plasma free fatty acids (FFA) levels and higher hepatic glycogen content and glucose disappearance constant during the IVITT. Neither the phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), nor its association with phosphatidylinositol-3-kinase (PI3-kinase), was affected by ethanol. However, ethanol consumption enhanced liver IRS-2 and protein kinase B (Akt) phosphorylation (3 times, P < 0.05), which can be involved in the 2-fold increased (P < 0.05) hepatic glycogen content. The GLUT2 protein content was unchanged. Our findings point out that liver plays a role in enhanced insulin sensitivity induced by low ethanol consumption. © 2005 Elsevier Inc. All rights reserved.
Resumo:
The potential for malignant transformation of oral lichen planus is still controversial. The expression of proteins related to cell proliferation and apoptosis in oral lichen planus and epithelial dysplasia was analyzed to evaluate the true potential for malignant transformation of this disease. Twenty-four cases of each lesion were subjected to the streptoavidin-biotin technique for identifying the immunohistochemical expression of PCNA, p53, bax, and bcl-2 proteins. Of the 24 cases of oral lichen planus, 14 (58.33%) were positive for PCNA, 10 (41.67%) for p53, 4 (16.67%) for bcl-2 and 12 (50%) for bax, whereas of the 24 cases of epithelial dysplasia, 20 (83.33%) were positive for PCNA, 10 (41.67%) for p53, 6 (25%) for bcl-2, and 20 (83.33%) for bax. Chi-squared test showed no statistically significant differences between the expression of p53 and bcl-2 in oral lichen planus and epithelial dysplasia, regardless of the grade (P > 0.05). However, the expression of PCNA and bax was significantly increased in epithelial dysplasia (P < 0.05). The results of this study showed that alterations in expression of these proteins are observed in oral lichen planus and epithelial dysplasia, suggesting the potential for malignant transformation in both lesions.