973 resultados para oily waste treatment
Resumo:
The present study attempted to identify the significant parameters which affect radionuclide migration from a low level radioactive waste disposal site located in a clay deposit. From initial sorption studies on smectite minerals, increased Kd with decreasing initial cation concentration was observed, and three sorption mechanisms were identified. The observation of anion dependent sorption was related to the existence of a mechanism in which an anion-cation pair are bound to the clay surface through the anion. The influence of competing cations, typical of inorganic groundwater constituents, depended on: (1) Ni/Co:Mn+(Mn+ = competing cation) ratio, (2) nature of M^n+, (3) total solution ionic strength. The presence of organic material in groundwater is well documented, but its effect on cation sorption has not been established. An initial qualitative investigation involving addition of simple organic ligands to Ni(Co)-hectorite samples demonstrated the formation of metal complexes in the clay interlayers, although some modified behaviour was observed. Further quantitative examination involving likely groundwater organic constituents and more comprehensive physical investigation confirmed this behaviour and enabled separation of the organic compounds used into two classes, according to their effect on cation sorption; (i) acids, (ii) amine compounds. X-ray photoelectron spectroscopy, scanning electron microscopy and Mossbauer spectroscopy were used to investigate the nature of transition metal ions sorbed onto montmorillonite and hectorite. Evidence strongly favoured the sorption of the hexaaquo cation, although a series of sorption sites of slightly different chemical characteristics were responsible for broadened peak widths observed in XPS and Mossbauer investigations. The surface sensitivity of XPS enabled recognition of the two surface sorption sites proposed in earlier sorption studies. Although thermal treatment of Fe^3+/Fe^2+-hectorite samples left iron atoms bonded to the silicate sheet structure, Mossbauer evidence indicated the presence of both ferric and ferrous iron in all samples.
Resumo:
The Haloclean process, a rotary kiln process for pyrolysis, developed by researchers at the Forschungszentrum Karlsruhe, Germany makes it possible to recover copper and precious metals from the scrap, ready for recycling. Pyrolysis neatly turns brominated electronic scrap plastics into recyclable copper and methanol feedstock while removing the halogens. The process has demonstrated its ability to recycle brominated electronic scrap in extensive parametric studies. A method suitable for the selective production of HBr in the presence of chlorine is the treatment of the pyrolysis oils with molten polypropylene. This treatment is offers the possibility to use the gas and liquid fraction from pyrolysis of electronic scrap as fossil fuel substitute in copper smelter processes or as feedstock for methanol production via gasification.
Resumo:
Due to vigorous globalisation and product proliferation in recent years, more waste has been produced by the soaring manufacturing activities. This has contributed to the significant need for an efficient waste management system to ensure, with all efforts, the waste is properly treated for recycling or disposed. This paper presents a Decision Support System (DSS) framework, based on Constraint Logic Programming (CLP), for the collection management of industrial waste (of all kinds) and discusses the potential employment of Radio-Frequency Identification Technology (RFID) to improve several critical procedures involved in managing waste collection. This paper also demonstrates a widely distributed and semi-structured network of waste producing enterprises (e.g. manufacturers) and waste processing enterprises (i.e. waste recycling/treatment stations) improving their operations planning by means of using the proposed DSS. The potential RFID applications to update and validate information in a continuous manner to bring value-added benefits to the waste collection business are also presented. © 2012 Inderscience Enterprises Ltd.
Resumo:
The common occurrence of human derived contaminants like pharmaceuticals, steroids and hormones in surface waters has raised the awareness of the role played by the release of treated or untreated sewage in the water quality along sensitive coastal ecosystems. South Florida is home to many important protected environments ranging from wetlands to coral reefs which are in close proximity to large metropolitan cities. Since large portions of South Florida and most of the Florida Keys population are not served by modern sewage treatment plants and rely heavily on the use of inefficient septic systems; a comprehensive survey of selected human waste contamination markers is needed in these areas to assess water quality with respect to non-traditional micro-constituents. ^ This study reports the development and application of new sensitive and selective analytical methods for the fast screening of multiple wastewater tracers, classified as Emergent Pollutants of Concern (EPOC). Novel methods for the trace analysis of non-traditional markers of human-specific contamination such as aminopropanone were developed and used to assess the potential of non-traditional markers as wastewater tracers. ^ During our investigation, surface water samples collected from near shore environments along the South Florida were analyzed for fifteen hormones and steroids, and five commonly detected pharmaceuticals. The compounds most frequently detected were: coprostanol, cholesterol, estrone, β-estradiol, caffeine, triclosan and DEET. Concentrations of caffeine, bisphenol A and DEET were usually higher and more prevalent than the hormonal steroids. In general, it was found that common pharmaceuticals and steroids are widely present in major coastal environments in South Florida. It is also evident that aquatic bodies in heavily urbanized sectors such as the Miami River and Key Largo Harbor contain higher concentrations of several compounds while relatively open bay waters and agricultural areas show reduced chemical signatures. Concentrations of hormones in the Little Venice area of Marathon Key were above the Lowest Observable Effect Levels (LOELs) for several species, indicating that biological resources in this area are at risk. Water quality issues in some of these coastal water environments go beyond eutrophication, thus EPOC should be the target goal for future mitigation projects. ^
Resumo:
Siloxanes are widely used in personal care and industrial products due to their low surface tension, thermal stability, antimicrobial and hydrophobic properties, among other characteristics. Volatile methyl siloxanes (VMS) have been detected both in landfill gas and biogas from anaerobic digesters at wastewater treatment plants. As a result, they are released to gas phase during waste decomposition and wastewater treatment. During transformation processes of digester or landfill gas to energy, siloxanes are converted to silicon oxides, leaving abrasive deposits on engine components. These deposits cause increased maintenance costs and in some cases complete engine overhauls become necessary. The objectives of this study were to compare the VMS types and levels present in biogas generated in the anaerobic digesters and landfills and evaluate the energetics of siloxane transformations under anaerobic conditions. Siloxane emissions, resulting from disposal of silicone-based materials, are expected to increase by 29% within the next 10 years. Estimated concentrations and the risk factors of exposure to siloxanes were evaluated based on the initial concentrations, partitioning characteristics and persistence. It was determined that D4 has the highest risk factor associated to bioaccumulation in liquid and solid phase, whereas D5 was highest in gas phase. Additionally, as siloxanes are combusted, the particle size range causes them to be potentially hazardous to human health. When inhaled, they may affix onto the alveoli of the lungs and may lead to development of silicosis. Siloxane-based COD-loading was evaluated and determined to be an insignificant factor concerning COD limits in wastewater. Removal of siloxane compounds is recommended prior to land application of biosolids or combustion of biogas. A comparison of estimated costs was made between maintenance practices for removal of siloxane deposits and installation/operation of fixed-bed carbon absorption systems. In the majority of cases, the installation of fixed-bed adsorption systems would not be a feasible option for the sole purpose of siloxane removal. However they may be utilized to remove additional compounds simultaneously.
Resumo:
A nuclear waste stream is the complete flow of waste material from origin to treatment facility to final disposal. The objective of this study was to design and develop a Geographic Information Systems (GIS) module using Google Application Programming Interface (API) for better visualization of nuclear waste streams that will identify and display various nuclear waste stream parameters. A proper display of parameters would enable managers at Department of Energy waste sites to visualize information for proper planning of waste transport. The study also developed an algorithm using quadratic Bézier curve to make the map more understandable and usable. Microsoft Visual Studio 2012 and Microsoft SQL Server 2012 were used for the implementation of the project. The study has shown that the combination of several technologies can successfully provide dynamic mapping functionality. Future work should explore various Google Maps API functionalities to further enhance the visualization of nuclear waste streams.
Resumo:
In Canada, increases in rural development has led to a growing need to effectively manage the resulting municipal and city sewage without the addition of significant cost- and energy- expending infrastructure. Storring Septic Service Limited is a family-owned, licensed wastewater treatment facility located in eastern Ontario. It makes use of a passive waste stabilization pond system to treat and dispose of waste and wastewater in an environmentally responsible manner. Storring Septic, like many other similar small-scale wastewater treatment facilities across Canada, has the potential to act as a sustainable eco-engineered facility that municipalities and service providers could utilize to manage and dispose of their wastewater. However, it is of concern that the substantial inclusion of third party material could be detrimental to the stability and robustness of the pond system. In order to augment the capacity of the current facility, and ensure it remains a self-sustaining system with the capacity to safely accept septage from other sewage haulers, it was hypothesized that pond effluent treatment could be further enhanced through the incorporation of one of three different technology solutions, which would allow the reduction of wastewater quality parameters below existing regulatory effluent discharge limits put in place by Ontario’s Ministry of the Environment and Climate Change (MOECC). Two of these solutions make use of biofilm technologies in order to enhance the removal of wastewater parameters of interest, and the third utilizes the natural water filtration capabilities of zebra mussels. Pilot-scale testing investigated the effects of each of these technologies on treatment performance under both cold and warm weather operation. This research aimed to understand the important mechanisms behind biological filtration methods in order to choose and optimize the best treatment strategy for full-scale testing and implementation. In doing so, a recommendation matrix was elaborated provided with the potential to be used as a universal operational strategy for wastewater treatment facilities located in environments of similar climate and ecology.
Resumo:
The reuse of industrial by-products is important for members of numerous industrial sectors. However, though the benefits of reuse are evident from an economical point of view, some compounds in these materials can have a negative effect on users' health.In this study, the radon emanation and exhalation features of red mud were surveyed using heat-treatment (100-1200 °C). As a result of the 1200°C-treated samples, massic radon exhalation capacity reduced from 75 ± 10 mBq kg-1 h-1 to 7 ± 4 mBq kg-1 h-1, approximately 10% of the initial exhalation rate.To find an explanation for internal structural changes, the porosity features of the heat-treated samples were also investigated. It was found that the cumulative pore volume reduced significantly in less than 100 nm, which can explain the reduced massic exhalation capacity in the high temperature treated range mentioned above.SEM snapshots were taken of the surfaces of the samples as visual evidence for superficial morphological changes. It was found that the surface of the high temperature treated samples had changed, proving the decrement of open pores on the surface.
Resumo:
The application of membrane separation processes (PSM) for treatment of radioactive waste requires the selection of a suitable membrane for the treatment of waste, as the membrane will be directly exposed to the radioactive liquid waste, and also exposed to ionizing radiation. The nanofiltration membrane is most suitable for treatment of radioactive waste, since it has high rejection of multivalent ions. Usually the membranes are made of polymers and depending on the composition of the waste, type and dose of radiation absorbed may be changes in the structure of the membrane, resulting in loss of its transport properties. We tested two commercial nanofiltration membranes: NF and SW Dow/Filmtec. The waste liquid used was obtained in the process of conversion of uranium hexafluoride gas to solid uranium dioxide, known as "carbonated water". The membranes were characterized as their transport properties (hydraulic permeability, permeate flux and salt rejection) before and after their immersion in the waste for 24 hours. The surface of the membranes was also evaluated by SEM and FTIR. It was observed that in both the porosity of the membrane selective layer was altered, but not the membrane surface charge, which is responsible for the selectivity of the membrane. The NF membranes and SW showed uranium ion rejection of 64% and 55% respectively.
Resumo:
Le béton conventionnel (BC) a de nombreux problèmes tels que la corrosion de l’acier d'armature et les faibles résistances des constructions en béton. Par conséquent, la plupart des structures fabriquées avec du BC exigent une maintenance fréquent. Le béton fibré à ultra-hautes performances (BFUP) peut être conçu pour éliminer certaines des faiblesses caractéristiques du BC. Le BFUP est défini à travers le monde comme un béton ayant des propriétés mécaniques, de ductilité et de durabilité supérieures. Le BFUP classique comprend entre 800 kg/m³ et 1000 kg/m³ de ciment, de 25 à 35% massique (%m) de fumée de silice (FS), de 0 à 40%m de poudre de quartz (PQ) et 110-140%m de sable de quartz (SQ) (les pourcentages massiques sont basés sur la masse totale en ciment des mélanges). Le BFUP contient des fibres d'acier pour améliorer sa ductilité et sa résistance aux efforts de traction. Les quantités importantes de ciment utilisées pour produire un BFUP affectent non seulement les coûts de production et la consommation de ressources naturelles comme le calcaire, l'argile, le charbon et l'énergie électrique, mais affectent également négativement les dommages sur l'environnement en raison de la production substantielle de gaz à effet de serre dont le gas carbonique (CO[indice inférieur 2]). Par ailleurs, la distribution granulométrique du ciment présente des vides microscopiques qui peuvent être remplis avec des matières plus fines telles que la FS. Par contre, une grande quantité de FS est nécessaire pour combler ces vides uniquement avec de la FS (25 à 30%m du ciment) ce qui engendre des coûts élevés puisqu’il s’agit d’une ressource limitée. Aussi, la FS diminue de manière significative l’ouvrabilité des BFUP en raison de sa surface spécifique Blaine élevée. L’utilisation du PQ et du SQ est également coûteuse et consomme des ressources naturelles importantes. D’ailleurs, les PQ et SQ sont considérés comme des obstacles pour l’utilisation des BFUP à grande échelle dans le marché du béton, car ils ne parviennent pas à satisfaire les exigences environnementales. D’ailleurs, un rapport d'Environnement Canada stipule que le quartz provoque des dommages environnementaux immédiats et à long terme en raison de son effet biologique. Le BFUP est généralement vendu sur le marché comme un produit préemballé, ce qui limite les modifications de conception par l'utilisateur. Il est normalement transporté sur de longues distances, contrairement aux composantes des BC. Ceci contribue également à la génération de gaz à effet de serre et conduit à un coût plus élevé du produit final. Par conséquent, il existe le besoin de développer d’autres matériaux disponibles localement ayant des fonctions similaires pour remplacer partiellement ou totalement la fumée de silice, le sable de quartz ou la poudre de quartz, et donc de réduire la teneur en ciment dans BFUP, tout en ayant des propriétés comparables ou meilleures. De grandes quantités de déchets verre ne peuvent pas être recyclées en raison de leur fragilité, de leur couleur, ou des coûts élevés de recyclage. La plupart des déchets de verre vont dans les sites d'enfouissement, ce qui est indésirable puisqu’il s’agit d’un matériau non biodégradable et donc moins respectueux de l'environnement. Au cours des dernières années, des études ont été réalisées afin d’utiliser des déchets de verre comme ajout cimentaire alternatif (ACA) ou comme granulats ultrafins dans le béton, en fonction de la distribution granulométrique et de la composition chimique de ceux-ci. Cette thèse présente un nouveau type de béton écologique à base de déchets de verre à ultra-hautes performances (BEVUP) développé à l'Université de Sherbrooke. Les bétons ont été conçus à l’aide de déchets verre de particules de tailles variées et de l’optimisation granulaire de la des matrices granulaires et cimentaires. Les BEVUP peuvent être conçus avec une quantité réduite de ciment (400 à 800 kg/m³), de FS (50 à 220 kg/m³), de PQ (0 à 400 kg/m³), et de SQ (0-1200 kg/m³), tout en intégrant divers produits de déchets de verre: du sable de verre (SV) (0-1200 kg/m³) ayant un diamètre moyen (d[indice inférieur 50]) de 275 µm, une grande quantité de poudre de verre (PV) (200-700 kg/m³) ayant un d50 de 11 µm, une teneur modérée de poudre de verre fine (PVF) (50-200 kg/m³) avec d[indice inférieur] 50 de 3,8 µm. Le BEVUP contient également des fibres d'acier (pour augmenter la résistance à la traction et améliorer la ductilité), du superplastifiants (10-60 kg/m³) ainsi qu’un rapport eau-liant (E/L) aussi bas que celui de BFUP. Le remplacement du ciment et des particules de FS avec des particules de verre non-absorbantes et lisse améliore la rhéologie des BEVUP. De plus, l’utilisation de la PVF en remplacement de la FS réduit la surface spécifique totale nette d’un mélange de FS et de PVF. Puisque la surface spécifique nette des particules diminue, la quantité d’eau nécessaire pour lubrifier les surfaces des particules est moindre, ce qui permet d’obtenir un affaissement supérieur pour un même E/L. Aussi, l'utilisation de déchets de verre dans le béton abaisse la chaleur cumulative d'hydratation, ce qui contribue à minimiser le retrait de fissuration potentiel. En fonction de la composition des BEVUP et de la température de cure, ce type de béton peut atteindre des résistances à la compression allant de 130 à 230 MPa, des résistances à la flexion supérieures à 20 MPa, des résistances à la traction supérieure à 10 MPa et un module d'élasticité supérieur à 40 GPa. Les performances mécaniques de BEVUP sont améliorées grâce à la réactivité du verre amorphe, à l'optimisation granulométrique et la densification des mélanges. Les produits de déchets de verre dans les BEVUP ont un comportement pouzzolanique et réagissent avec la portlandite générée par l'hydratation du ciment. Cependant, ceci n’est pas le cas avec le sable de quartz ni la poudre de quartz dans le BFUP classique, qui réagissent à la température élevée de 400 °C. L'addition des déchets de verre améliore la densification de l'interface entre les particules. Les particules de déchets de verre ont une grande rigidité, ce qui augmente le module d'élasticité du béton. Le BEVUP a également une très bonne durabilité. Sa porosité capillaire est très faible, et le matériau est extrêmement résistant à la pénétration d’ions chlorure (≈ 8 coulombs). Sa résistance à l'abrasion (indice de pertes volumiques) est inférieure à 1,3. Le BEVUP ne subit pratiquement aucune détérioration aux cycles de gel-dégel, même après 1000 cycles. Après une évaluation des BEVUP en laboratoire, une mise à l'échelle a été réalisée avec un malaxeur de béton industriel et une validation en chantier avec de la construction de deux passerelles. Les propriétés mécaniques supérieures des BEVUP a permis de concevoir les passerelles avec des sections réduites d’environ de 60% par rapport aux sections faites de BC. Le BEVUP offre plusieurs avantages économiques et environnementaux. Il réduit le coût de production et l’empreinte carbone des structures construites de béton fibré à ultra-hautes performances (BFUP) classique, en utilisant des matériaux disponibles localement. Il réduit les émissions de CO[indice inférieur 2] associées à la production de clinkers de ciment (50% de remplacement du ciment) et utilise efficacement les ressources naturelles. De plus, la production de BEVUP permet de réduire les quantités de déchets de verre stockés ou mis en décharge qui causent des problèmes environnementaux et pourrait permettre de sauver des millions de dollars qui pourraient être dépensés dans le traitement de ces déchets. Enfin, il offre une solution alternative aux entreprises de construction dans la production de BFUP à moindre coût.
Resumo:
In this paper agricultural waste; Canarium schweinfurthii was explored for the sequestering of Fe and Pb ions from wastewater solution after carbonization and chemical treatment at 400oC. Optimum time of 30 and 150 min with percentage removal of 95 and 98% at optimum pH of 2 and 6 was obtained for Fe and Pb ions. Kinetics model followed pseudofirst order as sum of absolute error (EABS) between Qe and Qc greater than that of pseudo second order. Parameters evaluated from isothermal equation (Freundlich and Langmuir) showed that KL and QO for Fe > Pb and R2 for Langmuir> Freundlich. The study reveals the suitability of the adsorbent for sequestering of Fe and Pb ions from industrial wastewater.
Resumo:
International audience
Resumo:
The aim of this work was to investigate the influence of the oily nucleus composition on physico-chemical properties and anesthetic activity of poly (lactide-co-glycolide) nanocapsules with benzocaine.Nanocapsules containing benzocaine were prepared with three different oily nucleus composition and characterized by mean diameter, polydispersivity, zeta potential, pH and stability were investigated as a function of time. In vitro release kinetics were performed in a system with two compartments separated by a cellulose membrane. Intensity and duration of analgesia were evaluated in rats by sciatic nerve blockade.The greatest stability, slower release profile and improvement in the local anesthetic activity of BZC were obtained with the formulation using USP mineral oil as component.Results from our study provide useful perspectives on selection of the primary materials needed to produce suspensions of polymeric nanocapsules able to act as carriers of BZC, with potential future application in the treatment of pain.