881 resultados para network performance
Resumo:
This thesis work concerns about the Performance evolution of peer to peer networks, where we used different distribution technique’s of peer distribution like Weibull, Lognormal and Pareto distribution process. Then we used a network simulator to evaluate the performance of these three distribution techniques.During the last decade the Internet has expanded into a world-wide network connecting millions of hosts and users and providing services for everyone. Many emerging applications are bandwidth-intensive in their nature; the size of downloaded files including music and videos can be huge, from ten megabits to many gigabits. The efficient use of network resources is thus crucial for the survivability of the Internet. Traffic engineering (TE) covers a range of mechanisms for optimizing operational networks from the traffic perspective. The time scale in traffic engineering varies from the short-term network control to network planning over a longer time period.Here in this thesis work we considered the peer distribution technique in-order to minimise the peer arrival and service process with three different techniques, where we calculated the congestion parameters like blocking time for each peer before entering into the service process, waiting time for a peers while the other peer has been served in the service block and the delay time for each peer. Then calculated the average of each process and graphs have been plotted using Matlab to analyse the results
Resumo:
This paper describes the formulation of a Multi-objective Pipe Smoothing Genetic Algorithm (MOPSGA) and its application to the least cost water distribution network design problem. Evolutionary Algorithms have been widely utilised for the optimisation of both theoretical and real-world non-linear optimisation problems, including water system design and maintenance problems. In this work we present a pipe smoothing based approach to the creation and mutation of chromosomes which utilises engineering expertise with the view to increasing the performance of the algorithm whilst promoting engineering feasibility within the population of solutions. MOPSGA is based upon the standard Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and incorporates a modified population initialiser and mutation operator which directly targets elements of a network with the aim to increase network smoothness (in terms of progression from one diameter to the next) using network element awareness and an elementary heuristic. The pipe smoothing heuristic used in this algorithm is based upon a fundamental principle employed by water system engineers when designing water distribution pipe networks where the diameter of any pipe is never greater than the sum of the diameters of the pipes directly upstream resulting in the transition from large to small diameters from source to the extremities of the network. MOPSGA is assessed on a number of water distribution network benchmarks from the literature including some real-world based, large scale systems. The performance of MOPSGA is directly compared to that of NSGA-II with regard to solution quality, engineering feasibility (network smoothness) and computational efficiency. MOPSGA is shown to promote both engineering and hydraulic feasibility whilst attaining good infrastructure costs compared to NSGA-II.
Resumo:
Esta dissertação apresenta um estudo de caso comparativo entre duas empresas operadoras de telefonia celular, onde são analisadas a acumulação de competências tecnológicas dessas empresas e a sua implicação para a performance operacional. Para tanto, é sugerida uma estrutura analítica que foi desenvolvida a partir de outra similar apresentada por Figueiredo (2000a). Essa estrutura sugerida é aplicada às empresas sob análise e permitirá a determinação do nível de acumulação de competências tecnológicas ocorrido no período de análise de cada uma delas. Além dos níveis de acumulação dessas competências, também poderão ser determinadas as taxas de evolução desse processo ao longo do tempo. Associada à análise da acumulação de competências tecnológicas, é também realizado um estudo da evolução da performance operacional da rede celular dessas empresas ao longo do tempo. Essa análise é feita suportada por medidas de indicadores operacionais específicos para redes como as estudas. A partir dessas duas análises, é avaliada a importância da acumulação de competências tecnológicas para a melhoria da performance operacional das empresas estudadas.
Resumo:
Private-Public Partnerships (P.P.P.) is a new contractual model institutionalized in 2004 that could be used to remedy to the infrastructure deficit in Brazil. In a context of a principal and agent relation, the public partner goal is to give incentives to the private partner in the contract so that their interests are aligned. This qualitative research presents the findings of an empirical study examining the performance of incentive PPP contracts in Brazil in the highway sector. The goal is to explain how the contracting parties can align their interests in an environment of asymmetric information. Literature identified the factors that can influence PPP design and efficient incentive contracts. The study assesses the contribution of these factors in the building of PPP contracts by focusing on the case of the first and only PPP signed in the highway sector in Brazil which is the MG-050. The first step is to describe the condition of the highway network and the level of compliance of the private partner with the contract PPP MG-050. The second step is to explain the performance of the private partner and conclude if the interests of both partners were aligned in contractual aspects. On the basis of these findings and the analysis of the contract, the study formulates suggestions to improve the draft of PPP contracts from the perspective of the incentive theory of contracts.
Resumo:
This study evaluates the influence of different cartographic representations of in-car navigation systems on visual demand, subjective preference, and navigational error. It takes into account the type and complexity of the representation, maneuvering complexity, road layout, and driver gender. A group of 28 drivers (14 male and 14 female) participated in this experiment which was performed in a low-cost driving simulator. The tests were performed on a limited number of instances for each type of representation, and their purpose was to carry out a preliminary assessment and provide future avenues for further studies. Data collected for the visual demand study were analyzed using non-parametric statistical analyses. Results confirmed previous research that showed that different levels of design complexity significantly influence visual demand. Non-grid-like road networks, for example, influence significantly visual demand and navigational error. An analysis of simple maneuvers on a grid-like road network showed that static and blinking arrows did not present significant differences. From the set of representations analyzed to assess visual demand, both arrows were equally efficient. From a gender perspective, women seem to took at the display more than men, but this factor was not significant. With respect to subjective preferences, drivers prefer representations with mimetic landmarks when they perform straight-ahead tasks. For maneuvering tasks, landmarks in a perspective model created higher visual demands.
Design and analysis of an efficient neural network model for solving nonlinear optimization problems
Resumo:
This paper presents an efficient approach based on a recurrent neural network for solving constrained nonlinear optimization. More specifically, a modified Hopfield network is developed, and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it handles optimization and constraint terms in different stages with no interference from each other. Moreover, the proposed approach does not require specification for penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyse its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network.
Resumo:
This work presents a methodology to analyze transient stability (first oscillation) of electric energy systems, using a neural network based on ART architecture (adaptive resonance theory), named fuzzy ART-ARTMAP neural network for real time applications. The security margin is used as a stability analysis criterion, considering three-phase short circuit faults with a transmission line outage. The neural network operation consists of two fundamental phases: the training and the analysis. The training phase needs a great quantity of processing for the realization, while the analysis phase is effectuated almost without computation effort. This is, therefore the principal purpose to use neural networks for solving complex problems that need fast solutions, as the applications in real time. The ART neural networks have as primordial characteristics the plasticity and the stability, which are essential qualities to the training execution and to an efficient analysis. The fuzzy ART-ARTMAP neural network is proposed seeking a superior performance, in terms of precision and speed, when compared to conventional ARTMAP, and much more when compared to the neural networks that use the training by backpropagation algorithm, which is a benchmark in neural network area. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper, a multi-objective approach for observing the performance of distribution systems with embedded generators in the steady state, based on heuristic and power system analysis, is proposed. The proposed hybrid performance index describes the quality of the operating state in each considered distribution network configuration. In order to represent the system state, the loss allocation in the distribution systems, based on the Z-bus loss allocation method and compensation-based power flow algorithm, is determined. Also, an investigation of the impact of the integration of embedded generators on the overall performance of the distribution systems in the steady state, is performed. Results obtained from several case studies are presented and discussed. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
This article presents a well-known interior point method (IPM) used to solve problems of linear programming that appear as sub-problems in the solution of the long-term transmission network expansion planning problem. The linear programming problem appears when the transportation model is used, and when there is the intention to solve the planning problem using a constructive heuristic algorithm (CHA), ora branch-and-bound algorithm. This paper shows the application of the IPM in a CHA. A good performance of the IPM was obtained, and then it can be used as tool inside algorithm, used to solve the planning problem. Illustrative tests are shown, using electrical systems known in the specialized literature. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The objective of this work is to develop a methodology for electric load forecasting based on a neural network. Here, backpropagation algorithm is used with an adaptive process that based on fuzzy logic and using a decaying exponential function to avoid instability in the convergence process. This methodology results in fast training, when compared to the conventional formulation of backpropagation algorithm. The results are presented using data from a Brazilian Electric Company, and shows a very good performance for the proposal objective.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work.
Resumo:
The identification of genes essential for survival is important for the understanding of the minimal requirements for cellular life and for drug design. As experimental studies with the purpose of building a catalog of essential genes for a given organism are time-consuming and laborious, a computational approach which could predict gene essentiality with high accuracy would be of great value. We present here a novel computational approach, called NTPGE (Network Topology-based Prediction of Gene Essentiality), that relies on the network topology features of a gene to estimate its essentiality. The first step of NTPGE is to construct the integrated molecular network for a given organism comprising protein physical, metabolic and transcriptional regulation interactions. The second step consists in training a decision-tree-based machine-learning algorithm on known essential and non-essential genes of the organism of interest, considering as learning attributes the network topology information for each of these genes. Finally, the decision-tree classifier generated is applied to the set of genes of this organism to estimate essentiality for each gene. We applied the NTPGE approach for discovering the essential genes in Escherichia coli and then assessed its performance. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A mathematical model and a methodology to solve the transmission network expansion planning problem with security constraints are presented. The methodology allows one to find an optimal and reliable transmission network expansion plan using a DC model to represent the electrical network. The security (n-1) criterion is used. The model presented is solved using a genetic algorithm designed to solve the reliable expansion planning in an efficient way. The results obtained for several known systems from literature show the excellent performance of the proposed methodology. A comparative analysis of the results obtained with the proposed methodology is also presented.
Resumo:
The transmission network planning problem is a non-linear integer mixed programming problem (NLIMP). Most of the algorithms used to solve this problem use a linear programming subroutine (LP) to solve LP problems resulting from planning algorithms. Sometimes the resolution of these LPs represents a major computational effort. The particularity of these LPs in the optimal solution is that only some inequality constraints are binding. This task transforms the LP into an equivalent problem with only one equality constraint (the power flow equation) and many inequality constraints, and uses a dual simplex algorithm and a relaxation strategy to solve the LPs. The optimisation process is started with only one equality constraint and, in each step, the most unfeasible constraint is added. The logic used is similar to a proposal for electric systems operation planning. The results show a higher performance of the algorithm when compared to primal simplex methods.