950 resultados para municipal water supply
Resumo:
Various lake phases have developed in the upper Great Lakes in response to isostatic adjustment and changes in water supply since the retreat of the Laurentide Ice Sheet. Georgian Bay experienced a lowstand that caused a basin wide unconformity approximately 7,500 years ago that cannot be explained by geological events. Thecamoebians are shelled protozoans abundant in freshwater environments and they are generally more sensitive to changing environmental conditions than the surrounding vegetation. Thecamoebians can be used to reconstruct the paleolimnology. The abundance of thecamoebians belonging to the genus Centropyxis, which are known to tolerate slightly brackish conditions (i.e. high concentrations of ions) records highly evaporative conditions in a closed basin. During the warmer interval (9000 to 700 yBP), the Centropyxis - dominated population diminishes and is replaced by an abundant and diverse Difflugia dominate population. Historical climate records from Tobermory and Midland, Ontario were correlated with the Lake Huron water level curve. The fossil pollen record and comparison with modem analogues allowed a paleo-water budget to be calculated for Georgian Bay. Transfer function analysis of fossil pollen data from Georgian Bay records cold, dry winters similar to modem day Minneapolis, Minnesota. Drier climates around this time are also recorded in bog environments in Southem Ontario - the drying of Lake Tonawanda and inception of paludification in Willoughby Bog, for instance, dates around 7,000 years ago. The dramatic impact of climate change on the water level in Georgian Bay underlines the importance of paleoclimatic research for predicting future environmental change in the Great Lakes.
Resumo:
The site of present-day St. Catharines was settled by 3000 United Empire Loyalists at the end of the 18th century. From 1790, the settlement (then known as "The Twelve") grew as an agricultural community. St. Catharines was once referred to Shipman's Corners after Paul Shipman, owner of a tavern that was an important stagecoach transfer point. In 1815, leading businessman William Hamilton Merritt abandoned his wharf at Queenston and set up another at Shipman's Corners. He became involved in the construction and operation of several lumber and gristmills along Twelve Mile Creek. Shipman's Corners soon became the principal milling site of the eastern Niagara Peninsula. At about the same time, Merritt began to develop the salt springs that were discovered along the river which subsequently gave the village a reputation as a health resort. By this time St. Catharines was the official name of the village; the origin of the name remains obscure, but is thought to be named after Catharine Askin Robertson Hamilton, wife of the Hon. Robert Hamilton, a prominent businessman. Merritt devised a canal scheme from Lake Erie to Lake Ontario that would provide a more reliable water supply for the mills while at the same time function as a canal. He formed the Welland Canal Company, and construction took place from 1824 to 1829. The canal and the mills made St. Catharines the most important industrial centre in Niagara. By 1845, St. Catharines was incorporated as a town, with the town limits extending in 1854. Administrative and political functions were added to St. Catharines in 1862 when it became the county seat of Lincoln. In 1871, construction began on the third Welland Canal, which attracted additional population to the town. As a consequence of continual growth, the town limits were again extended. St. Catharines attained city status in 1876 with its larger population and area. Manufacturing became increasingly important in St. Catharines in the early 1900s with the abundance of hydro-electric power, and its location on important land and water routes. The large increase in population after the 1900s was mainly due to the continued industrialization and urbanization of the northern part of the city and the related expansion of business activity. The fourth Welland Canal was opened in 1932 as the third canal could no longer accommodate the larger ships. The post war years and the automobile brought great change to the urban form of St. Catharines. St. Catharines began to spread its boundaries in all directions with land being added five times during the 1950s. The Town of Merritton, Village of Port Dalhousie and Grantham Township were all incorporated as part of St. Catharines in 1961. In 1970 the Province of Ontario implemented a regional approach to deal with such issues as planning, pollution, transportation and services. As a result, Louth Township on the west side of the city was amalgamated, extending the city's boundary to Fifteen Mile Creek. With its current population of 131,989, St. Catharines has become the dominant centre of the Niagara region. Source: City of St. Catharines website http://www.stcatharines.ca/en/governin/HistoryOfTheCity.asp (January 27, 2011)
Resumo:
Water is the very essential livelihood for mankind. The United Nations suggest that each person needs 20-50 litres of water a day to ensure basic needs of drinking, cooking and cleaning. It was also endorsed by the Indian National Water Policy 2002, with the provision that adequate safe drinking water facilities should be provided to the entire population both in urban and in rural areas. About 1.42 million rural habitations in India are affected by chemical contamination. The provision of clean drinking water has been given priority in the Constitution of India, in Article 47 conferring the duty of providing clean drinking water and improving public health standards to the State. Excessive dependence of ground water results in depletion of ground water, water contamination and water borne diseases. Thus, access to safe and reliable water supply is one of the serious concerns in rural water supply programme. Though government takes certain serious steps in addressing the drinking water issues in rural areas, still there is a huge gap between demand and supply. The Draft National Water Policy 2012 also states that Water quality and quantity are interlinked and need to be managed in an integrated manner and with Stakeholder participation. Water Resources Management aims at optimizing the available natural water flows, including surface water and groundwater, to satisfy competing needs. The World Bank also emphasizes on managing water resources, strengthening institutions, identifying and implementing measures of improving water governance and increasing the efficiency of water use. Therefore stakeholders’ participation is viewed important in managing water resources at different levels and range. This paper attempts to reflect up on portray the drinking water issues in rural India, and highlights the significance of Integrated Water Resource Management as the significant part of Millennium Development Goals, and Stakeholders’ participation in water resources management.
Resumo:
In Oman, during the last three decades, agricultural water use and groundwater extraction has dramatically increased to meet the needs of a rapidly growing population and major changes in lifestyle. This has triggered agricultural land-use changes which have been poorly investigated. In view of this our study aimed at analysing patterns of shortterm land-use changes (2007-2009) in the five irrigated mountain oases of Ash Sharayjah, Al’Ayn, Al’Aqr, Qasha’ and Masayrat ar Ruwajah situated in the northern Oman Hajar mountains of Al Jabal Al Akhdar where competitive uses of irrigation water are particularly apparent. Comprehensive GIS-based field surveys were conducted over three years to record changes in terrace use in these five oases where farmers have traditionally adapted to rain-derived variations of irrigation water supply, e.g. by leaving agricultural terraces of annual crops uncultivated in drought years. Results show that the area occupied with field crops decreased in the dry years of 2008 and 2009 for all oases. In Ash Sharayjah, terrace areas grown with field crops declined from 4.7 ha (32.4 % of total terrace area) in 2007 to 3.1 ha (21.6 %) in 2008 and 3.0 ha (20.5 %) in 2009. Similarly, the area proportion of field crops shrunk in Al’Ayn, Qasha’ and Masayrat from 35.2, 36.3 and 49.6 % in 2007 to 19.8, 8.5 and 41.3 % in 2009, respectively. In Al’Aqr, the area of field crops slightly increased from 0.3 ha (17.0 %) in 2007 to 0.7 (39.1 %) in 2008, and decreased to 0.5 ha (28.8 %) in 2009. During the same period annual dry matter yields of the cash crop garlic in Ash Sharayjah increased from 16.3 t ha-1 in 2007 to 19.8 t ha-1 in 2008 and 18.3 t ha-1 in 2009, while the same crop yielded only 0.4, 1.6 and 1.1 t ha-1 in Masayrat. In 2009, the total estimated agricultural area of the new town of Sayh Qatanah above the five oases was around 13.5 ha. Our results suggest that scarcity of irrigation water as a result of low precipitation and increased irrigation and home water consumption in the new urban settlements above the five oases have led to major shifts in the land-use pattern and increasingly threaten the centuries-long tradition and drought-resilience of agriculture in the oases of the studied watershed.
Resumo:
The research of this thesis dissertation covers developments and applications of short-and long-term climate predictions. The short-term prediction emphasizes monthly and seasonal climate, i.e. forecasting from up to the next month over a season to up to a year or so. The long-term predictions pertain to the analysis of inter-annual- and decadal climate variations over the whole 21st century. These two climate prediction methods are validated and applied in the study area, namely, Khlong Yai (KY) water basin located in the eastern seaboard of Thailand which is a major industrial zone of the country and which has been suffering from severe drought and water shortage in recent years. Since water resources are essential for the further industrial development in this region, a thorough analysis of the potential climate change with its subsequent impact on the water supply in the area is at the heart of this thesis research. The short-term forecast of the next-season climate, such as temperatures and rainfall, offers a potential general guideline for water management and reservoir operation. To that avail, statistical models based on autoregressive techniques, i.e., AR-, ARIMA- and ARIMAex-, which includes additional external regressors, and multiple linear regression- (MLR) models, are developed and applied in the study region. Teleconnections between ocean states and the local climate are investigated and used as extra external predictors in the ARIMAex- and the MLR-model and shown to enhance the accuracy of the short-term predictions significantly. However, as the ocean state – local climate teleconnective relationships provide only a one- to four-month ahead lead time, the ocean state indices can support only a one-season-ahead forecast. Hence, GCM- climate predictors are also suggested as an additional predictor-set for a more reliable and somewhat longer short-term forecast. For the preparation of “pre-warning” information for up-coming possible future climate change with potential adverse hydrological impacts in the study region, the long-term climate prediction methodology is applied. The latter is based on the downscaling of climate predictions from several single- and multi-domain GCMs, using the two well-known downscaling methods SDSM and LARS-WG and a newly developed MLR-downscaling technique that allows the incorporation of a multitude of monthly or daily climate predictors from one- or several (multi-domain) parent GCMs. The numerous downscaling experiments indicate that the MLR- method is more accurate than SDSM and LARS-WG in predicting the recent past 20th-century (1971-2000) long-term monthly climate in the region. The MLR-model is, consequently, then employed to downscale 21st-century GCM- climate predictions under SRES-scenarios A1B, A2 and B1. However, since the hydrological watershed model requires daily-scale climate input data, a new stochastic daily climate generator is developed to rescale monthly observed or predicted climate series to daily series, while adhering to the statistical and geospatial distributional attributes of observed (past) daily climate series in the calibration phase. Employing this daily climate generator, 30 realizations of future daily climate series from downscaled monthly GCM-climate predictor sets are produced and used as input in the SWAT- distributed watershed model, to simulate future streamflow and other hydrological water budget components in the study region in a multi-realization manner. In addition to a general examination of the future changes of the hydrological regime in the KY-basin, potential future changes of the water budgets of three main reservoirs in the basin are analysed, as these are a major source of water supply in the study region. The results of the long-term 21st-century downscaled climate predictions provide evidence that, compared with the past 20th-reference period, the future climate in the study area will be more extreme, particularly, for SRES A1B. Thus, the temperatures will be higher and exhibit larger fluctuations. Although the future intensity of the rainfall is nearly constant, its spatial distribution across the region is partially changing. There is further evidence that the sequential rainfall occurrence will be decreased, so that short periods of high intensities will be followed by longer dry spells. This change in the sequential rainfall pattern will also lead to seasonal reductions of the streamflow and seasonal changes (decreases) of the water storage in the reservoirs. In any case, these predicted future climate changes with their hydrological impacts should encourage water planner and policy makers to develop adaptation strategies to properly handle the future water supply in this area, following the guidelines suggested in this study.
Resumo:
This report is intended to shed more light on the ongoing water struggle in Caimanes, a small urban area in the central northern area of Chile, neighbouring Latin America’s biggest tailings dam. Undoubtedly, the water in Caimanes is running out and the conflict between the opponents of the dam and its owner, a multinational copper enterprise, is getting more and more attention by the national and also international media. In the discussion a judgment of the Chilean Supreme Court from last October plays a central role, because it is said to have granted the people from Caimanes their right to water. After a short introduction with some details about Camaines and the tailings from the dam El Mauro, the key points of this judgment shall be outlined. The final part of the report is dedicated to various institutional problems of the Chilean resources law and policy that can become virulent for the water supply and the environmental well-being of many other urban areas in the industrialized north of Chile.
Resumo:
En el present treball es realitza un estudi hidràulic i de qualitat de les aigües de la xarxa municipal per tal d’analitzar en primer lloc el seu estat actual i proposar posteriorment una sèrie d’actuacions de millora. Això s’ha desenvolupat amb l’ajuda d’un programa de simulació de xarxes hidràuliques i de qualitat, en ser l’estudi d’una elevada envergadura, que feia inviable l’estudi empíric de la instal•lació. El simulador utilitzat ha estat l’EPANET, el qual va estar elaborat per la NATIONAL RISK MANAGEMENT RESEARCH LABORATORY de Cincinatty, als Estats Units i traduït a l’espanyol pel grup REDHISP Inst. Ingenieria del agua y M.A. de la Universitat Politècnica de València
Resumo:
El interés de este estudio de caso es analizar la situación vivida entre los Estados de la cuenca del Sistema Tigris-Éufrates, un recurso hídrico transfronterizo entre 1990 y el 2003. Se estudia y explica cómo el Interés Nacional de Turquía, Siria e Irak, Estados ribereños del Sistema supuso un obstáculo para la implementación de la Gestión Integrada de Recursos Hídricos sobre la cuenca, al impedir la cooperación y coordinación de las políticas gubernamentales, dificultando la protección de la cuenca y la garantía del acceso al recurso de forma equitativa. Este trabajo se enmarca en los estudios sobre Seguridad Ambiental, particularmente en la teoría de la Escasez Ambiental de Thomas Homer-Dixon y el Grupo de Toronto, referente a la relación entre la escasez de un recurso natural renovable y el surgimiento de un conflicto.
Resumo:
This paper describes a study assessing the sound levels and noise exposures of a municipal water treatment plant to determine the level of employee noise exposure dosages and to make any necessary recommendations regarding reducing the risk of noise induced hearing loss in employees.
Resumo:
Partiendo de una mirada retrospectiva del período colonial, el artículo ofrece una visión general sobre el sistema de abastecimiento de agua en la ciudad de Quito, a fines del siglo XIX e inicios del XX. Con este propósito, se estudian las políticas municipales de higienización y salud pública y cómo incidieron en los hábitos domésticos de los habitantes. Además, se aborda el crecimiento urbano en relación a la provisión de agua potable y al crecimiento poblacional.
Resumo:
One of the distinctive characteristics of the water supply system of Greater Amman, the capital of Jordan, is that it has been based on a regime of rationing since 1987, with households receiving water once a week for various durations. This reflects the fact that while Amman's recent growth has been phenomenal, Jordan is one of the ten most water-scarce nations on earth. Amman is highly polarised socio-economically, and by means of household surveys conducted in both high- and low-income divisions of the city, the aim has been to provide detailed empirical evidence concerning the storage and use if water, the strategies used by households to manage water and overall satisfactions with water supply issues, looking specifically at issues of social equity. The analysis demonstrates the social costs of water rationing and consequent household management to be high, as well as emphasising that issues of water quality are of central importance to all consumers.
Resumo:
It is now accepted that some human-induced climate change is unavoidable. Potential impacts on water supply have received much attention, but relatively little is known about the concomitant changes in water quality. Projected changes in air temperature and rainfall could affect river flows and, hence, the mobility and dilution of contaminants. Increased water temperatures will affect chemical reaction kinetics and, combined with deteriorations in quality, freshwater ecological status. With increased flows there will be changes in stream power and, hence, sediment loads with the potential to alter the morphology of rivers and the transfer of sediments to lakes, thereby impacting freshwater habitats in both lake and stream systems. This paper reviews such impacts through the lens of UK surface water quality. Widely accepted climate change scenarios suggest more frequent droughts in summer, as well as flash-flooding, leading to uncontrolled discharges from urban areas to receiving water courses and estuaries. Invasion by alien species is highly likely, as is migration of species within the UK adapting to changing temperatures and flow regimes. Lower flows, reduced velocities and, hence, higher water residence times in rivers and lakes will enhance the potential for toxic algal blooms and reduce dissolved oxygen levels. Upland streams could experience increased dissolved organic carbon and colour levels, requiring action at water treatment plants to prevent toxic by-products entering public water supplies. Storms that terminate drought periods will flush nutrients from urban and rural areas or generate acid pulses in acidified upland catchments. Policy responses to climate change, such as the growth of bio-fuels or emission controls, will further impact freshwater quality.
Resumo:
Climate change is expected to produce reductions in water availability in England, potentially necessitating adaptive action by the water industry to maintain supplies. As part of Ofwat's fifth Periodic Review (PR09), water companies recently released their draft Water Resources Management Plans, setting out how each company intends to maintain the balance between the supply and demand for water over the next 25 years, following Environment Agency guidelines. This paper reviews these plans to determine company estimates of the impact of climate change on water supply relative to other resource pressures. The approaches adopted for incorporating the impact in the plans and the proposed management solutions are also identified. Climate change impacts for individual resource zones range from no reductions in deployable output to greater than 50% over the planning period. The estimated national aggregated loss of deployable output under a “core” climate scenario is ~520 Ml/d (3% of deployable output) by 2034/35, the equivalent of the supply of one entire water company (South West Water). Climate change is the largest single driver of change in water supplies over the planning period. Over half of the climate change impact is concentrated in southern England. In extreme cases, climate change uncertainty is of the same magnitude as the change under the core scenario (up to a loss of ~475 Ml/d). 44 of the 68 resource zones with available data are estimated to have a climate change impact. In 35 of these climate change has the greatest impact although in 10 zones sustainability reductions have a greater impact. Of the overall change in downward pressure on the supply-demand balance over the planning period, ~56% is accounted for by increased demand (620 Ml/d) and supply side climate change accounts for ~37% (407 Ml/d). Climate change impacts have a cumulative impact in concert with other changing supply side reducing components increasing the national pressure on the supply-demand balance. Whilst the magnitude of climate change appears to justify its explicit consideration, it is rare that adaptation options are planned solely in response to climate change but as a suite of options to provide a resilient supply to a range of pressures (including significant demand side pressures). Supply-side measures still tend to be considered by water companies to be more reliable than demand-side measures.
Resumo:
Public water supplies in England and Wales are provided by around 25 private-sector companies, regulated by an economic regulator (Ofwat) and and environmental regulator (Environment Agency). As part of the regulatory process, companies are required periodically to review their investment needs to maintain safe and secure supplies, and this involves an assessment of the future balance between water supply and demand. The water industry and regulators have developed an agreed set of procedures for this assessment. Climate change has been incorporated into these procedures since the late 1990s, although has been included increasingly seriously over time and it has been an effective legal requirement to consider climate change since the 2003 Water Act. In the most recent assessment in 2009, companies were required explicitly to plan for a defined amount of climate change, taking into account climate change uncertainty. A “medium” climate change scenario was defined, together with “wet” and “dry” extremes, based on scenarios developed from a number of climate models. The water industry and its regulators are now gearing up to exploit the new UKCP09 probabilistic climate change projections – but these pose significant practical and conceptual challenges. This paper outlines how the procedures for incorporating climate change information into water resources planning have evolved, and explores the issues currently facing the industry in adapting to climate change.
Resumo:
In this paper are identified several factors which affect a potential user's willingness to use recycled water for agricultural irrigation. This study is based on the results of a survey carried out among farmers in the island of Crete, Greece. It was found that a higher level of income and education are positively correlated with a respondent's willingness to use recycled water. Income and education are also positively correlated with a potential user's sensitivity to information on the advantages of using non-conventional water resources. Overall, extra information on the advantages of recycled water has a statistically significant impact on reported degrees of willingness to use recycled water.