874 resultados para multivariate stochastic volatility
Resumo:
The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.
Resumo:
Semiclassical Einstein-Langevin equations for arbitrary small metric perturbations conformally coupled to a massless quantum scalar field in a spatially flat cosmological background are derived. Use is made of the fact that for this problem the in-in or closed time path effective action is simply related to the Feynman-Vernon influence functional which describes the effect of the ``environment,'' the quantum field which is coarse grained here, on the ``system,'' the gravitational field which is the field of interest. This leads to identify the dissipation and noise kernels in the in-in effective action, and to derive a fluctuation-dissipation relation. A tensorial Gaussian stochastic source which couples to the Weyl tensor of the spacetime metric is seen to modify the usual semiclassical equations which can be veiwed now as mean field equsations. As a simple application we derive the correlation functions of the stochastic metric fluctuations produced in a flat spacetime with small metric perturbations due to the quantum fluctuations of the matter field coupled to these perturbations.
Resumo:
We consider the classical stochastic fluctuations of spacetime geometry induced by quantum fluctuations of massless nonconformal matter fields in the early Universe. To this end, we supplement the stress-energy tensor of these fields with a stochastic part, which is computed along the lines of the Feynman-Vernon and Schwinger-Keldysh techniques; the Einstein equation is therefore upgraded to a so-called Einstein-Langevin equation. We consider in some detail the conformal fluctuations of flat spacetime and the fluctuations of the scale factor in a simple cosmological model introduced by Hartle, which consists of a spatially flat isotropic cosmology driven by radiation and dust.
Resumo:
In the first part of this paper, we show that the semiclassical Einstein-Langevin equation, introduced in the framework of a stochastic generalization of semiclassical gravity to describe the back reaction of matter stress-energy fluctuations, can be formally derived from a functional method based on the influence functional of Feynman and Vernon. In the second part, we derive a number of results for background solutions of semiclassical gravity consisting of stationary and conformally stationary spacetimes and scalar fields in thermal equilibrium states. For these cases, fluctuation-dissipation relations are derived. We also show that particle creation is related to the vacuum stress-energy fluctuations and that it is enhanced by the presence of stochastic metric fluctuations.
Resumo:
In the State of Rio Grande do Sul, the municipality of Pelotas is responsible for 90 % of peach production due to its suitable climate and soil conditions. However, there is the need for new studies that aim at improved fruit quality and increased yield. The aim of this study was to evaluate the relationship that exists between soil physical properties and properties in the peach plant in the years 2010 and 2011 by the technique of multivariate canonical correlation. The experiment was conducted in a peach orchard located in the municipality of Morro Redondo, RS, Brazil, where an experimental grid of 101 plants was established. In a trench dug beside each one of the 101 plants, soil samples were collected to determine silt, clay, and sand contents, soil density, total porosity, macroporosity, microporosity, and volumetric water content in the 0.00-0.10 and 0.10-0.20 m layers, as well as the depth of the A horizon. In each plant and in each year, the following properties were assessed: trunk diameter, fruit size and number of fruits per plant, average weight of the fruit per plant, fruit pulp firmness, Brix content, and yield from the orchard. Exploratory analysis of the data was undertaken by descriptive statistics, and the relationships between the physical properties of the soil and of the plant were assessed by canonical correlation analysis. The results showed that the clay and microporosity variables were those that exhibited the highest coefficients of canonical cross-loading with the plant properties in the soil layers assessed, and that the variable of mean weight of the fruit per plant was that which had the highest coefficients of canonical loading within the plant group for the two years assessed.
Resumo:
The semiclassical Einstein-Langevin equations which describe the dynamics of stochastic perturbations of the metric induced by quantum stress-energy fluctuations of matter fields in a given state are considered on the background of the ground state of semiclassical gravity, namely, Minkowski spacetime and a scalar field in its vacuum state. The relevant equations are explicitly derived for massless and massive fields arbitrarily coupled to the curvature. In doing so, some semiclassical results, such as the expectation value of the stress-energy tensor to linear order in the metric perturbations and particle creation effects, are obtained. We then solve the equations and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. In the conformal field case, explicit results are obtained. These results hint that gravitational fluctuations in stochastic semiclassical gravity have a non-perturbative behavior in some characteristic correlation lengths.
Resumo:
In inflationary cosmological models driven by an inflaton field the origin of the primordial inhomogeneities which are responsible for large-scale structure formation are the quantum fluctuations of the inflaton field. These are usually calculated using the standard theory of cosmological perturbations, where both the gravitational and the inflaton fields are linearly perturbed and quantized. The correlation functions for the primordial metric fluctuations and their power spectrum are then computed. Here we introduce an alternative procedure for calculating the metric correlations based on the Einstein-Langevin equation which emerges in the framework of stochastic semiclassical gravity. We show that the correlation functions for the metric perturbations that follow from the Einstein-Langevin formalism coincide with those obtained with the usual quantization procedures when the scalar field perturbations are linearized. This method is explicitly applied to a simple model of chaotic inflation consisting of a Robertson-Walker background, which undergoes a quasi-de Sitter expansion, minimally coupled to a free massive quantum scalar field. The technique based on the Einstein-Langevin equation can, however, deal naturally with the perturbations of the scalar field even beyond the linear approximation, as is actually required in inflationary models which are not driven by an inflaton field, such as Starobinsky¿s trace-anomaly driven inflation or when calculating corrections due to nonlinear quantum effects in the usual inflaton driven models.
Resumo:
We have analyzed the effects of the addition of external noise to nondynamical systems displaying intrinsic noise, and established general conditions under which stochastic resonance appears. The criterion we have found may be applied to a wide class of nondynamical systems, covering situations of different nature. Some particular examples are discussed in detail.
Resumo:
We present a class of systems for which the signal-to-noise ratio always increases when increasing the noise and diverges at infinite noise level. This new phenomenon is a direct consequence of the existence of a scaling law for the signal-to-noise ratio and implies the appearance of stochastic resonance in some monostable systems. We outline applications of our results to a wide variety of systems pertaining to different scientific areas. Two particular examples are discussed in detail.
Resumo:
We present a class of systems for which the signal-to-noise ratio as a function of the noise level may display a multiplicity of maxima. This phenomenon, referred to as stochastic multiresonance, indicates the possibility that periodic signals may be enhanced at multiple values of the noise level, instead of at a single value which has occurred in systems considered up to now in the framework of stochastic resonance.
Resumo:
We show the appearance of spatiotemporal stochastic resonance in the Swift-Hohenberg equation. This phenomenon emerges when a control parameter varies periodically in time around the bifurcation point. By using general scaling arguments and by taking into account the common features occurring in a bifurcation, we outline possible manifestations of the phenomenon in other pattern-forming systems.
Resumo:
Abstract Traditionally, the common reserving methods used by the non-life actuaries are based on the assumption that future claims are going to behave in the same way as they did in the past. There are two main sources of variability in the processus of development of the claims: the variability of the speed with which the claims are settled and the variability between the severity of the claims from different accident years. High changes in these processes will generate distortions in the estimation of the claims reserves. The main objective of this thesis is to provide an indicator which firstly identifies and quantifies these two influences and secondly to determine which model is adequate for a specific situation. Two stochastic models were analysed and the predictive distributions of the future claims were obtained. The main advantage of the stochastic models is that they provide measures of variability of the reserves estimates. The first model (PDM) combines one conjugate family Dirichlet - Multinomial with the Poisson distribution. The second model (NBDM) improves the first one by combining two conjugate families Poisson -Gamma (for distribution of the ultimate amounts) and Dirichlet Multinomial (for distribution of the incremental claims payments). It was found that the second model allows to find the speed variability in the reporting process and development of the claims severity as function of two above mentioned distributions' parameters. These are the shape parameter of the Gamma distribution and the Dirichlet parameter. Depending on the relation between them we can decide on the adequacy of the claims reserve estimation method. The parameters have been estimated by the Methods of Moments and Maximum Likelihood. The results were tested using chosen simulation data and then using real data originating from the three lines of business: Property/Casualty, General Liability, and Accident Insurance. These data include different developments and specificities. The outcome of the thesis shows that when the Dirichlet parameter is greater than the shape parameter of the Gamma, resulting in a model with positive correlation between the past and future claims payments, suggests the Chain-Ladder method as appropriate for the claims reserve estimation. In terms of claims reserves, if the cumulated payments are high the positive correlation will imply high expectations for the future payments resulting in high claims reserves estimates. The negative correlation appears when the Dirichlet parameter is lower than the shape parameter of the Gamma, meaning low expected future payments for the same high observed cumulated payments. This corresponds to the situation when claims are reported rapidly and fewer claims remain expected subsequently. The extreme case appears in the situation when all claims are reported at the same time leading to expectations for the future payments of zero or equal to the aggregated amount of the ultimate paid claims. For this latter case, the Chain-Ladder is not recommended.
Resumo:
We consider Brownian motion on a line terminated by two trapping points. A bias term in the form of a telegraph signal is applied to this system. It is shown that the first two moments of survival time exhibit a minimum at the same resonant frequency.