973 resultados para multimedia video
Resumo:
This paper explores the obstacles associated with designing video game levels for the purpose of objectively measuring flow. We sought to create three video game levels capable of inducing a flow state, an overload state (low-flow), and a boredom state (low-flow). A pilot study, in which participants self-reported levels of flow after playing all three game levels, was undertaken. Unexpected results point to the challenges of operationalising flow in video game research, obstacles in experimental design for invoking flow and low-flow, concerns about flow as a construct for measuring video game enjoyment, the applicability of self-report flow scales, and the experience of flow in video game play despite substantial challenge-skill differences.
Resumo:
Bandwidth allocation for multimedia applications in case of network congestion and failure poses technical challenges due to bursty and delay sensitive nature of the applications. The growth of multimedia services on Internet and the development of agent technology have made us to investigate new techniques for resolving the bandwidth issues in multimedia communications. Agent technology is emerging as a flexible promising solution for network resource management and QoS (Quality of Service) control in a distributed environment. In this paper, we propose an adaptive bandwidth allocation scheme for multimedia applications by deploying the static and mobile agents. It is a run-time allocation scheme that functions at the network nodes. This technique adaptively finds an alternate patchup route for every congested/failed link and reallocates the bandwidth for the affected multimedia applications. The designed method has been tested (analytical and simulation)with various network sizes and conditions. The results are presented to assess the performance and effectiveness of the approach. This work also demonstrates some of the benefits of the agent based schemes in providing flexibility, adaptability, software reusability, and maintainability. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Bandwidth allocation for multimedia applications in case of network congestion and failure poses technical challenges due to bursty and delay sensitive nature of the applications. The growth of multimedia services on Internet and the development of agent technology have made us to investigate new techniques for resolving the bandwidth issues in multimedia communications. Agent technology is emerging as a flexible promising solution for network resource management and QoS (Quality of Service) control in a distributed environment. In this paper, we propose an adaptive bandwidth allocation scheme for multimedia applications by deploying the static and mobile agents. It is a run-time allocation scheme that functions at the network nodes. This technique adaptively finds an alternate patchup route for every congested/failed link and reallocates the bandwidth for the affected multimedia applications. The designed method has been tested (analytical and simulation)with various network sizes and conditions. The results are presented to assess the performance and effectiveness of the approach. This work also demonstrates some of the benefits of the agent based schemes in providing flexibility, adaptability, software reusability, and maintainability. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Large external memory bandwidth requirement leads to increased system power dissipation and cost in video coding application. Majority of the external memory traffic in video encoder is due to reference data accesses. We describe a lossy reference frame compression technique that can be used in video coding with minimal impact on quality while significantly reducing power and bandwidth requirement. The low cost transformless compression technique uses lossy reference for motion estimation to reduce memory traffic, and lossless reference for motion compensation (MC) to avoid drift. Thus, it is compatible with all existing video standards. We calculate the quantization error bound and show that by storing quantization error separately, bandwidth overhead due to MC can be reduced significantly. The technique meets key requirements specific to the video encode application. 24-39% reduction in peak bandwidth and 23-31% reduction in total average power consumption are observed for IBBP sequences.
Resumo:
In this paper, we show that it is possible to reduce the complexity of Intra MB coding in H.264/AVC based on a novel chance constrained classifier. Using the pairs of simple mean-variances values, our technique is able to reduce the complexity of Intra MB coding process with a negligible loss in PSNR. We present an alternate approach to address the classification problem which is equivalent to machine learning. Implementation results show that the proposed method reduces encoding time to about 20% of the reference implementation with average loss of 0.05 dB in PSNR.
Resumo:
Motion Estimation is one of the most power hungry operations in video coding. While optimal search (eg. full search)methods give best quality, non optimal methods are often used in order to reduce cost and power. Various algorithms have been used in practice that trade off quality vs. complexity. Global elimination is an algorithm based on pixel averaging to reduce complexity of motion search while keeping performance close to that of full search. We propose an adaptive version of the global elimination algorithm that extracts individual macro-block features using Hadamard transform to optimize the search. Performance achieved is close to the full search method and global elimination. Operational complexity and hence power is reduced by 30% to 45% compared to global elimination method.
Resumo:
In this paper, we study how TCP and UDP flows interact with each other when the end system is a CPU resource constrained thin client. The problem addressed is twofold, 1) the throughput of TCP flows degrades severely in the presence of heavily loaded UDP flows 2) fairness and minimum QoS requirements of UDP are not maintained. First, we identify the factors affecting the TCP throughput by providing an in-depth analysis of end to end delay and packet loss variations. The results obtained from the first part leads us to our second contribution. We propose and study the use of an algorithm that ensures fairness across flows. The algorithm improves the performance of TCP flows in the presence of multiple UDP flows admitted under an admission algorithm and maintains the minimum QoS requirements of the UDP flows. The advantage of the algorithm is that it requires no changes to TCP/IP stack and control is achieved through receiver window control.
Resumo:
A built-in-self-test (BIST) subsystem embedded in a 65-nm mobile broadcast video receiver is described. The subsystem is designed to perform analog and RF measurements at multiple internal nodes of the receiver. It uses a distributed network of CMOS sensors and a low bandwidth, 12-bit A/D converter to perform the measurements with a serial bus interface enabling a digital transfer of measured data to automatic test equipment (ATE). A perturbation/correlation based BIST method is described, which makes pass/fail determination on parts, resulting in significant test time and cost reduction.
Resumo:
With the advent of Internet, video over IP is gaining popularity. In such an environment, scalability and fault tolerance will be the key issues. Existing video on demand (VoD) service systems are usually neither scalable nor tolerant to server faults and hence fail to comply to multi-user, failure-prone networks such as the Internet. Current research areas concerning VoD often focus on increasing the throughput and reliability of single server, but rarely addresses the smooth provision of service during server as well as network failures. Reliable Server Pooling (RSerPool), being capable of providing high availability by using multiple redundant servers as single source point, can be a solution to overcome the above failures. During a possible server failure, the continuity of service is retained by another server. In order to achieve transparent failover, efficient state sharing is an important requirement. In this paper, we present an elegant, simple, efficient and scalable approach which has been developed to facilitate the transfer of state by the client itself, using extended cookie mechanism, which ensures that there is no noticeable change in disruption or the video quality.
Resumo:
Rate control regulates the instantaneous video bit -rate to maximize a picture quality metric while satisfying channel constraints. Typically, a quality metric such as Peak Signalto-Noise ratio (PSNR) or weighted signal -to-noise ratio(WSNR) is chosen out of convenience. However this metric is not always truly representative of perceptual video quality.Attempts to use perceptual metrics in rate control have been limited by the accuracy of the video quality metrics chosen.Recently, new and improved metrics of subjective quality such as the Video quality experts group's (VQEG) NTIA1 General Video Quality Model (VQM) have been proven to have strong correlation with subjective quality. Here, we apply the key principles of the NTIA -VQM model to rate control in order to maximize perceptual video quality. Our experiments demonstrate that applying NTIA -VQM motivated metrics to standard TMN8 rate control in an H.263 encoder results in perceivable quality improvements over a baseline TMN8 / MSE based implementation.
Resumo:
Non-Identical Duplicate video detection is a challenging research problem. Non-Identical Duplicate video are a pair of videos that are not exactly identical but are almost similar.In this paper, we evaluate two methods - Keyframe -based and Tomography-based methods to determine the Non-Identical Duplicate videos. These two methods make use of the existing scale based shift invariant (SIFT) method to find the match between the key frames in first method, and the cross-sections through the temporal axis of the videos in second method.We provide extensive experimental results and the analysis of accuracy and efficiency of the above two methods on a data set of Non- Identical Duplicate video-pair.
Resumo:
Image and video filtering is a key image-processing task in computer vision especially in noisy environment. In most of the cases the noise source is unknown and hence possess a major difficulty in the filtering operation. In this paper we present an error-correction based learning approach for iterative filtering. A new FIR filter is designed in which the filter coefficients are updated based on Widrow-Hoff rule. Unlike the standard filter the proposed filter has the ability to remove noise without the a priori knowledge of the noise. Experimental result shows that the proposed filter efficiently removes the noise and preserves the edges in the image. We demonstrate the capability of the proposed algorithm by testing it on standard images infected by Gaussian noise and on a real time video containing inherent noise. Experimental result shows that the proposed filter is better than some of the existing standard filters
Resumo:
H.264 is a video codec standard which delivers high resolution video even at low bit rates. To provide high throughput at low bit rates hardware implementations are essential. In this paper, we propose hardware implementations for speed and area optimized DCT and quantizer modules. To target above criteria we propose two architectures. First architecture is speed optimized which gives a high throughput and can meet requirements of 4096x2304 frame at 30 frames/sec. Second architecture is area optimized and occupies 2009 LUTs in Altera’s stratix-II and can meet the requirements of 1080HD at 30 frames/sec.
Resumo:
Video streaming applications have hitherto been supported by single server systems. A major drawback of such a solution is that it increases the server load. The server restricts the number of clients that can be simultaneously supported due to limitation in bandwidth. The constraints of a single server system can be overcome in video streaming if we exploit the endless resources available in a distributed and networked system. We explore a P2P system for streaming video applications. In this paper we build a P2P streaming video (SVP2P) service in which multiple peers co-operate to serve video segments for new requests, thereby reducing server load and bandwidth used. Our simulation shows the playback latency using SVP2P is roughly 1/4th of the latency incurred when the server directly streams the video. Bandwidth consumed for control messages (overhead) is as low as 1.5% of the total data transfered. The most important observation is that the capacity of the SVP2P grows dynamically.