906 resultados para moving least squares approximation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ambiguity validation as an important procedure of integer ambiguity resolution is to test the correctness of the fixed integer ambiguity of phase measurements before being used for positioning computation. Most existing investigations on ambiguity validation focus on test statistic. How to determine the threshold more reasonably is less understood, although it is one of the most important topics in ambiguity validation. Currently, there are two threshold determination methods in the ambiguity validation procedure: the empirical approach and the fixed failure rate (FF-) approach. The empirical approach is simple but lacks of theoretical basis. The fixed failure rate approach has a rigorous probability theory basis, but it employs a more complicated procedure. This paper focuses on how to determine the threshold easily and reasonably. Both FF-ratio test and FF-difference test are investigated in this research and the extensive simulation results show that the FF-difference test can achieve comparable or even better performance than the well-known FF-ratio test. Another benefit of adopting the FF-difference test is that its threshold can be expressed as a function of integer least-squares (ILS) success rate with specified failure rate tolerance. Thus, a new threshold determination method named threshold function for the FF-difference test is proposed. The threshold function method preserves the fixed failure rate characteristic and is also easy-to-apply. The performance of the threshold function is validated with simulated data. The validation results show that with the threshold function method, the impact of the modelling error on the failure rate is less than 0.08%. Overall, the threshold function for the FF-difference test is a very promising threshold validation method and it makes the FF-approach applicable for the real-time GNSS positioning applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diagnosis of articular cartilage pathology in the early disease stages using current clinical diagnostic imaging modalities is challenging, particularly because there is often no visible change in the tissue surface and matrix content, such as proteoglycans (PG). In this study, we propose the use of near infrared (NIR) spectroscopy to spatially map PG content in articular cartilage. The relationship between NIR spectra and reference data (PG content) obtained from histology of normal and artificially induced PG-depleted cartilage samples was investigated using principal component (PC) and partial least squares (PLS) regression analyses. Significant correlation was obtained between both data (R2 = 91.40%, p<0.0001). The resulting correlation was used to predict PG content from spectra acquired from whole joint sample, this was then employed to spatially map this component of cartilage across the intact sample. We conclude that NIR spectroscopy is a feasible tool for evaluating cartilage contents and mapping their distribution across mammalian joint

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenols are well known noxious compounds, which are often found in various water sources. A novel analytical method has been researched and developed based on the properties of hemin–graphene hybrid nanosheets (H–GNs). These nanosheets were synthesized using a wet-chemical method, and they have peroxidase-like activity. Also, in the presence of H2O2, the nanosheets are efficient catalysts for the oxidation of the substrate, 4-aminoantipine (4-AP), and the phenols. The products of such an oxidation reaction are the colored quinone-imines (benzodiazepines). Importantly, these products enabled the differentiation of the three common phenols – pyrocatechol, resorcin and hydroquinone, with the use of a novel, spectroscopic method, which was developed for the simultaneous determination of the above three analytes. This spectroscopic method produced linear calibrations for the pyrocatechol (0.4–4.0 mg L−1), resorcin (0.2–2.0 mg L−1) and hydroquinone (0.8–8.0 mg L−1) analytes. In addition, kinetic and spectral data, obtained from the formation of the colored benzodiazepines, were used to establish multi-variate calibrations for the prediction of the three phenol analytes found in various kinds of water; partial least squares (PLS), principal component regression (PCR) and artificial neural network (ANN) models were used and the PLS model performed best.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactions between the anti-carcinogens, bendamustine (BDM) and dexamethasone (DXM), with bovine serum albumin (BSA) were investigated with the use of fluorescence and UV–vis spectroscopies under pseudo-physiological conditions (Tris–HCl buffer, pH 7.4). The static mechanism was responsible for the fluorescence quenching during the interactions; the binding formation constant of the BSA–BDM complex and the binding number were 5.14 × 105 L mol−1 and 1.0, respectively. Spectroscopic studies for the formation of BDM–BSA complex were interpreted with the use of multivariate curve resolution – alternating least squares (MCR–ALS), which supported the complex formation. The BSA samples treated with site markers (warfarin – site I and ibuprofen – site II) were reacted separately with BDM and DXM; while both anti-carcinogens bound to site I, the binding constants suggested that DXM formed a more stable complex. Relative concentration profiles and the fluorescence spectra associated with BDM, DXM and BSA, were recovered simultaneously from the full fluorescence excitation–emission data with the use of the parallel factor analysis (PARAFAC) method. The results confirmed that on addition of DXM to the BDM–BSA complex, the BDM was replaced and the DXM–BSA complex formed; free BDM was released. This finding may have consequences for the transport of these drugs during any anti-cancer treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of Forsythia suspensa from raw (Laoqiao) and ripe (Qingqiao) fruit were analyzed with the use of HPLC-DAD and the EIS-MS techniques. Seventeen peaks were detected, and of these, twelve were identified. Most were related to the glucopyranoside molecular fragment. Samples collected from three geographical areas (Shanxi, Henan and Shandong Provinces), were discriminated with the use of hierarchical clustering analysis (HCA), discriminant analysis (DA), and principal component analysis (PCA) models, but only PCA was able to provide further information about the relationships between objects and loadings; eight peaks were related to the provinces of sample origin. The supervised classification models-K-nearest neighbor (KNN), least squares support vector machines (LS-SVM), and counter propagation artificial neural network (CP-ANN) methods, indicated successful classification but KNN produced 100% classification rate. Thus, the fruit were discriminated on the basis of their places of origin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose The purpose of this paper is to explore the role of marketing in today's enterprises and examines the antecedents of the marketing department's influence and its relationship with market orientation and firm performance. Design/methodology/approach Data were collected from the West (i.e. the USA and Europe) and the East (i.e. Asia). Partial least squares (PLS) was used to estimate structural models. Findings The findings support the idea that a strong and influential marketing department contributes positively to firm performance. This finding holds for Western and Asian, and for small/medium and large firms alike. Second, the marketing department's influence in a firm depends more on its responsibilities and resources, and less on internal contingency factors (i.e. a firm's competitive strategy or institutional attributes). Third, a marketing department's influence in the West affects firm performance both directly and indirectly (via market orientation). In contrast, this relationship is fully mediated among Eastern firms. Fourth, low-cost strategies enhance the influence of a firm's marketing department in the East, but not in the West. Research limitations/implications The paper assumes explicitly that a marketing department's influence is an antecedent of its market orientation. While the paper finds support for this link, the paper did not test for dual causality between the constructs. Originality/value Countering the frequent claim in anecdotal and journalistic work that the role of the marketing department diminishes, the findings show that across different geographic regions and firm sizes, strong marketing departments improve firm performance (especially in the marketing-savvy West), and that they should continue to play an important role in firms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – While many studies have predominantly looked at the benefits and risks of cloud computing, little is known whether and to what extent institutional forces play a role in cloud computing adoption. The purpose of this paper is to explore the role of institutional factors in top management team’s (TMT’s) decision to adopt cloud computing services. Design/methodology/approach – A model is developed and tested with data from an Australian survey using the partial least squares modeling technique. Findings – The results suggest that mimetic and coercive pressures influence TMT’s beliefs in the benefits of cloud computing. The results also show that TMT’s beliefs drive TMT’s participation, which in turn affects the intention to increase the adoption of cloud computing solutions. Research limitations/implications – Future studies could incorporate the influences of local actors who might also press for innovation. Practical implications – Given the influence of institutional forces and the plethora of cloud-based solutions on the market, it is recommended that TMTs exercise a high degree of caution when deciding for the types of applications to be outsourced as organizational requirements in terms of performance and security will differ. Originality/value – The paper contributes to the growing empirical literature on cloud computing adoption and offers the institutional framework as an alternative lens with which to interpret cloud-based information technology outsourcing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel differential pulse voltammetry (DPV) method was developed for the simultaneous analysis of herbicides in water. A mixture of four herbicides, atrazine, simazine, propazine and terbuthylazine was analyzed simultaneously and the complex, overlapping DPV voltammograms were resolved by several chemometrics methods such as partial least squares (PLS), principal component regression (PCR) and principal component–artificial networks (PC–ANN). The complex profiles of the voltammograms collected from a synthetic set of samples were best resolved with the use of the PC–ANN method, and the best predictions of the concentrations of the analytes were obtained with the PC-ANN model (%RPET = 6.1 and average %Recovery = 99.0). The new method was also used for analysis of real samples, and the obtained results were compared well with those from the GC-MS technique. Such conclusions suggest that the novel method is a viable alternative to the other commonly used methods such as GC, HPLC and GC-MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review is focused on the impact of chemometrics for resolving data sets collected from investigations of the interactions of small molecules with biopolymers. These samples have been analyzed with various instrumental techniques, such as fluorescence, ultraviolet–visible spectroscopy, and voltammetry. The impact of two powerful and demonstrably useful multivariate methods for resolution of complex data—multivariate curve resolution–alternating least squares (MCR–ALS) and parallel factor analysis (PARAFAC)—is highlighted through analysis of applications involving the interactions of small molecules with the biopolymers, serum albumin, and deoxyribonucleic acid. The outcomes illustrated that significant information extracted by the chemometric methods was unattainable by simple, univariate data analysis. In addition, although the techniques used to collect data were confined to ultraviolet–visible spectroscopy, fluorescence spectroscopy, circular dichroism, and voltammetry, data profiles produced by other techniques may also be processed. Topics considered including binding sites and modes, cooperative and competitive small molecule binding, kinetics, and thermodynamics of ligand binding, and the folding and unfolding of biopolymers. Applications of the MCR–ALS and PARAFAC methods reviewed were primarily published between 2008 and 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flos Chrysanthemum is a generic name for a particular group of edible plants, which also have medicinal properties. There are, in fact, twenty to thirty different cultivars, which are commonly used in beverages and for medicinal purposes. In this work, four Flos Chrysanthemum cultivars, Hangju, Taiju, Gongju, and Boju, were collected and chromatographic fingerprints were used to distinguish and assess these cultivars for quality control purposes. Chromatography fingerprints contain chemical information but also often have baseline drifts and peak shifts, which complicate data processing, and adaptive iteratively reweighted, penalized least squares, and correlation optimized warping were applied to correct the fingerprint peaks. The adjusted data were submitted to unsupervised and supervised pattern recognition methods. Principal component analysis was used to qualitatively differentiate the Flos Chrysanthemum cultivars. Partial least squares, continuum power regression, and K-nearest neighbors were used to predict the unknown samples. Finally, the elliptic joint confidence region method was used to evaluate the prediction ability of these models. The partial least squares and continuum power regression methods were shown to best represent the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined data matrix consisting of high performance liquid chromatography–diode array detector (HPLC–DAD) and inductively coupled plasma-mass spectrometry (ICP-MS) measurements of samples from the plant roots of the Cortex moutan (CM), produced much better classification and prediction results in comparison with those obtained from either of the individual data sets. The HPLC peaks (organic components) of the CM samples, and the ICP-MS measurements (trace metal elements) were investigated with the use of principal component analysis (PCA) and the linear discriminant analysis (LDA) methods of data analysis; essentially, qualitative results suggested that discrimination of the CM samples from three different provinces was possible with the combined matrix producing best results. Another three methods, K-nearest neighbor (KNN), back-propagation artificial neural network (BP-ANN) and least squares support vector machines (LS-SVM) were applied for the classification and prediction of the samples. Again, the combined data matrix analyzed by the KNN method produced best results (100% correct; prediction set data). Additionally, multiple linear regression (MLR) was utilized to explore any relationship between the organic constituents and the metal elements of the CM samples; the extracted linear regression equations showed that the essential metals as well as some metallic pollutants were related to the organic compounds on the basis of their concentrations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel near-infrared spectroscopy (NIRS) method has been researched and developed for the simultaneous analyses of the chemical components and associated properties of mint (Mentha haplocalyx Briq.) tea samples. The common analytes were: total polysaccharide content, total flavonoid content, total phenolic content, and total antioxidant activity. To resolve the NIRS data matrix for such analyses, least squares support vector machines was found to be the best chemometrics method for prediction, although it was closely followed by the radial basis function/partial least squares model. Interestingly, the commonly used partial least squares was unsatisfactory in this case. Additionally, principal component analysis and hierarchical cluster analysis were able to distinguish the mint samples according to their four geographical provinces of origin, and this was further facilitated with the use of the chemometrics classification methods-K-nearest neighbors, linear discriminant analysis, and partial least squares discriminant analysis. In general, given the potential savings with sampling and analysis time as well as with the costs of special analytical reagents required for the standard individual methods, NIRS offered a very attractive alternative for the simultaneous analysis of mint samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying inequalities in air pollution levels across population groups can help address environmental justice concerns. We were interested in assessing these inequalities across major urban areas in Australia. We used a land-use regression model to predict ambient nitrogen dioxide (NO2) levels and sought the best socio-economic and population predictor variables. We used a generalised least squares model that accounted for spatial correlation in NO2 levels to examine the associations between the variables. We found that the best model included the index of economic resources (IER) score as a non-linear variable and the percentage of non-Indigenous persons as a linear variable. NO2 levels decreased with increasing IER scores (higher scores indicate less disadvantage) in almost all major urban areas, and NO2 also decreased slightly as the percentage of non-Indigenous persons increased. However, the magnitude of differences in NO2 levels was small and may not translate into substantive differences in health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

l-Lysine acetate crystallises in the monoclinic space group P21 with a = 5.411 (1), b = 7.562(1), c= l2.635(2) Å and β = 91.7(1). The crystal structure was solved by direct methods and refined to an R value of 0.049 using the full matrix least squares method. The conformation and the aggregation of lysine molecules in the structure are similar to those found in the crystal structure of l-lysine l-aspartate. A conspicuous similarity between the crystal structures of l-arginine acetate and l-lysine acetate is that in both cases the strongly basic side chain, although having the largest pK value, interacts with the weakly acidic acetate group leaving the α-amino and the α-carboxylate groups to take part in head-to-tail sequences. These structures thus indicate that electrostatic effects are strongly modulated by other factors so as to give rise to head-to-tail sequences which have earlier been shown to be an almost universal feature of amino acid aggregation in the solid state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.