480 resultados para moult energetics
Resumo:
The post-larval development of the mud crab Eurytium limosum was studied under laboratory conditions by using the offspring of ovigerous females collected at the Comprido River mangrove, SP, Brazil. The first crab stage is fully described and the juvenile development, until crab stage 10, is examined with emphasis on morphological change, sexual differentiation and growth patterns. The carapace of the first crab stage is nearly square as observed in other xanthids, becoming similar to adults only at stage 15. The sexes can be distinguished from stage four, based on the number of pleopods and their morphology. While the intermoult period increases, the moult percentage decreases at each stage. The abdominal allometric growth is sex-dependent, with males showing a negative (b=0.71) and females an isometric (b=0.95) relative growth pattern. Male gonopods undergo a positive allometric growth, and their shape changes remarkably until sexual maturity. The cheliped dentition can be observed after stage 4. Regardless of sex, most crabs have a molariform right cheliped, which is thought to aid the handling of asymmetric prey such as gastropods.
Resumo:
Callinectes danae Smith, 1869, known as siri-azul, is an important fishery resource along the Brazilian coast. The reproductive cycle of this species was studied based on their moult cycle and the development of their gonads. The animals were collected with an otter-trawl in the Ubatuba region (23 degrees 26'S 45 degrees 02'W) every other month from July 1991 to May 1993. A total of 1826 specimens were captured: 788 males and 1038 females. Ovigerous females and specimens with developed gonads in both sexes were found in all months sampled. In females, moult activity was recorded in all size classes while in males, it was verified from 20-27 mm to 90-97 mm size classes. The females produced more than one clutch during a single reproductive season, a fact evidenced by the presence of ovigerous females with ovaries in all the development phases. The species C. danae reproduces continuously, like most brachyurans from tropical waters.
Resumo:
The allometric growth of secondary sexual characters in Pachygrapsus transversus is investigated from the 2(nd) crab stage onward. Clear sexual dimorphism is restricted to abdominal morphology, but ANCOVA analyses showed that chelae become larger in males and the carapace becomes wider in females. Size at the puberty moult in both sexes was estimated using Somerton's computer techniques. Mature II analyses applied to bi-log gonopod length vs, carapace length relationships indicated a puberty moult at 5.0 mm in males.In females, Mature I analyses detected the overlapping growth phase lines in bi-log carapace length vs. abdomen width scatterplots. Fitting the logistic equation provided an estimate of 50% maturity at 5.5 mm. The regression lines separate young and resting individuals from the potentially reproductive females, but they do not separate young from adult crabs. Year-round monthly samples showed that the proportion of small adult-like females is higher during the breeding season. After breeding, females may moult to a young-like morphotype, as observed in controlled laboratory conditions. Moulting to a resting condition splits smaller mature females into different growth phase lines. Therefore, estimates of female size at sexual maturity by means of abdomen allometric growth analyses are inadequate in this species.
Resumo:
The present study cross-sectionally investigated the influence of training status, route difficulty and upper body aerobic and anaerobic performance of climbers on the energetics of indoor rock climbing. Six elite climbers (EC) and seven recreational climbers ( RC) were submitted to the following laboratory tests: ( a) anthropometry, (b) upper body aerobic power, and ( c) upper body Wingate test. on another occasion, EC subjects climbed an easy, a moderate, and a difficult route, whereas RC subjects climbed only the easy route. The fractions of the aerobic (WAER), anaerobic alactic (W-PCR) and anaerobic lactic (W-[La(])-) systems were calculated based on oxygen uptake, the fast component of excess post-exercise oxygen uptake, and changes in net blood lactate, respectively. on the easy route, the metabolic cost was significantly lower in EC [ 40.3 ( 6.5) kJ] than in RC [60.1 ( 8.8) kJ] ( P < 0.05). The respective contributions of the WAER, WPCR, and W-[La(])- systems in EC were: easy route = 41.5 (8.1), 41.1 (11.4) and 17.4% (5.4), moderate route = 45.8 (8.4), 34.6 (7.1) and 21.9% (6.3), and difficult route = 41.9 (7.4), 35.8 (6.7) and 22.3% (7.2). The contributions of the WAER, WPCR, and W-[La(])- systems in RC subjects climbing an easy route were 39.7 (5.0), 34.0 (5.8), and 26.3% (3.8), respectively. These results indicate that the main energy systems required during indoor rock climbing are the aerobic and anaerobic alactic systems. In addition, climbing economy seems to be more important for the performance of these athletes than improved energy metabolism.
Resumo:
Foi objetivo deste estudo caracterizar a relação entre o nível de aptidão física, desempenho e solicitação metabólica em futebolistas durante situação real de jogo. Seis jogadores de futebol profissional com média de idade de 20,8 ± 2,6 anos (17-25), peso 70,4 ± 7,5kg (63-81,3) e altura 173,3 ± 9,7cm (166-188), foram submetidos a testes de aptidão física em campo e análise cinematográfica durante a partida. Os testes de aptidão física foram realizados em campo, com medições de lactato sanguíneo. A via metabólica alática foi avaliada por meio de cinco corridas na distância de 30m, em velocidade máxima, com pausa passiva de um minuto entre cada corrida. As concentrações de lactato foram medidas no 1º, 3º e 5º minuto após o término das cinco corridas. Para detecção do limiar anaeróbio foram realizadas 3 corridas de 1.200m nas intensidades de 80, 85 e 90% da velocidade máxima para essa distância, com intervalo passivo de 15 minutos entre cada corrida. As dosagens de lactato sanguíneo foram feitas no 1º, 3º e 5º minuto de repouso passivo após cada corrida. Os futebolistas foram submetidos à filmagem individual durante o transcorrer do jogo e as concentrações de lactato foram medidas antes, no intervalo e no final da partida para análise da solicitação energética e metabólica, respectivamente. Os seguintes resultados foram verificados: 1) o limiar anaeróbio em velocidade de corrida, correspondente à concentração de lactato sanguíneo de 4mmol.L_1 foi encontrado aos 268 ± 28m.min_1 ou 16,1 ± 1,6km.h_1; 2) a velocidade média e a concentração de lactato máximo nas corridas de 30m foram de 6,9 ± 0,2m.s_1 e 4,5 ± 1,0mmol.L_1, respectivamente; 3) a distância total percorrida foi de 10.392 ± 849m, sendo 5.446 ± 550m para o primeiro e 4.945 ± 366m para o segundo tempo, respectivamente; 4) os valores médios encontrados nas concentrações de lactato sanguíneo foram de 1,58 ± 0,37; 4,5 ± 0,42 e 3,46 ± 1,54mmol.L_1 antes, no intervalo do primeiro para o segundo tempo e ao final da a,respectivamente; e 5) a distância média total atingida ao final das partidas pelos jogadores de meio-campo (10.910 ± 121m) foi ligeiramente maior que a percorrida pelos atacantes (10.377 ± 224m) e defensores (9.889 ± 102m), mas não significativa. Houve correlação negativa (r =- 0,84; p < 0,05) entre o limiar anaeróbio (268 ± 28m.min_1 ou 16,1 ± 1,6km.h_1) e a concentração de lactato sanguíneo (4,5 ± 0,4 mmol.L_1) no primeiro tempo do jogo. Portanto, os resultados sugerem que a capacidade aeróbia é um determinante importante para suportar a longa duração da partida e recuperar mais rapidamente os futebolistas dos esforços realizados em alta intensidade, com o desenvolvimento de concentrações de lactato sanguíneo menores ao final do primeiro e segundo tempo das partidas.
Resumo:
We quantified the oxygen uptake rates ((V) over dot O-2) and time spent, during the constriction, inspection, and ingestion of prey of different relative sizes, by the prey-constricting boid snake Boa constrictor amarali. Time spent in prey constriction varied from 7.6 to 16.3 min, and (V) over dot O-2 during prey constriction increased 6.8-fold above resting values. This was the most energy expensive predation phase but neither time spent nor metabolic rate during this phase were correlated with prey size. Similarly, prey size did not affect the (V) over dot O-2 or duration of prey inspection. Prey ingestion time, on the other hand, increased linearly with prey size although (V) over dot O-2 during this phase, which increased 4.9-fold above resting levels, was not affected by prey size. The increase in mechanical difficulty of ingesting larger prey, therefore, was associated with longer ingestion times rather than proportional increases in the level of metabolic effort. The data indicate that prey constriction and ingestion are largely sustained by glycolysis and the intervening phase of prey inspection may allow recovery between these two predatory phases with high metabolic demands. The total amount of energy spent by B. c. amarali to constrict, inspect, and ingest prey of sizes varying from 5 to 40% of snake body mass varied inversely from 0.21 to 0.11% of the energy assimilated from the prey, respectively. Thus, prey size was not limited by the energetic cost of predation. on the contrary, snakes feeding on larger prey were rewarded with larger energetic returns, in accordance with explanations of the evolution of snake feeding specializations. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
We studied the effect of meal size on specific dynamic action (SDA) in the South American rattlesnake Crotalus durissus, by measuring oxygen consumption rates (VO2) prior to and after the ingestion of meals ranging from 10-50% of snake's body mass. Regardless of meal size, variation in VO2 with time during digestion demonstrated the same general pattern. Oxygen consumption rates peaked between 15 and 33 h post-feeding, at values 3.7-7.3 times those prior to feeding. Snakes, while digesting meals of 30% and 50% of their body mass, experienced VO2 that exceeded rates measured during forced activity. Following peaks in VO2, rates returned to prefeeding values within 62-170 h post-feeding. Post-prandial peak in VO2 and the duration of the metabolic response to feeding increased with meal size. Digestion is an energetically demanding activity for C. durissus, with an estimated cost equaling 12-18% of the ingested assimilated energy.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The digestive tube of 2nd and 3rd instar larvae, pupae and newly emerged adults of Dermatobia hominis (Linnaeus, 1781) was studied anatomically. The specimens were dissected in buffer saline under a stereomicroscope, and the digestive tubes were placed on slides and fixed in 10% buffered formalin. Each tube was measured using a micrometric eye piece, and drawings were made with camera lucida. The results showed that the midgut, the hindgut and the Malpighian tubules with their ducts grow gradually during the larval development. The oesophagus and the salivary glands with their ducts grow only during the moult from the 2nd to the 3rd instar. In the pupal period, salivary glands grow gradually but disappeared after the 20th day. After metamorphosis the digestive tube regressed. This is expected since adult D. hominis lives about nine days without feeding. This fly, similar to other calyptratae muscoid flies shows no vestige of a crop during all post-embrionic development, and the adult has no salivary glands.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work we present evidence that water molecules are actively involved on the control of binding affinity and binding site discrimination of a drug to natural DNA. In a previous study, the effect of water activity (a(w)) on the energetic parameters of actinomycin-D intercalation to natural DNA was determined using the osmotic stress method (39). This earlier study has shown evidence that water molecules act as an allosteric regulator of ligand binding to DNA via the effect of water activity on the long-range stability of the DNA secondary structure. In this work we have carried out DNA circularization experiments using the plasmid pUC18 in the absence of drugs and in the presence of different neutral solutes to evaluate the contribution of water activity to the energetics of DNA helix unwinding. The contribution of water to these independent reactions were made explicit by the description of how the changes in the free energy of ligand binding to DNA and in the free energy associated with DNA helix torsional deformation are linked to a(w) via changes in structural hydration. Taken together, the results of these studies reveal an extensive linkage between ligand binding affinity and site binding discrimination, and long range helix conformational changes and DNA hydration, This is strong evidence that water molecules work as a classical allosteric regulator of ligand binding to the DNA via its contribution to the stability of the double helix secondary structure, suggesting a possible mechanism by which the biochemical machinery of DNA processing takes advantage of the low activity of water into the cellular milieu.
Resumo:
Few environmental factors have a larger influence on animal energetics than temperature, a fact that makes thermoregulation a very important process for survival. In general, endothermic species, i.e., mammals and birds, maintain a constant body temperature (Tb) in fluctuating environmental temperatures using autonomic and behavioural mechanisms. Most of the knowledge on thermoregulatory physiology has emerged from studies using mammalian species, particularly rats. However, studies with all vertebrate groups are essential for a more complete understanding of the mechanisms involved in the regulation of Tb. Ectothermic vertebrates-fish, amphibians and reptiles-thermoregulate essentially by behavioural mechanisms. With few exceptions, both endotherms and ectotherms develop fever (a regulated increase in Tb) in response to exogenous pyrogens, and regulated hypothermia (anapyrexia) in response to hypoxia. This review focuses on the mechanisms, particularly neuromediators and regions in the central nervous system, involved in thermoregulation in vertebrates, in conditions of euthermia, fever and anapyrexia. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this article, we review intraspecific studies of basal metabolic rate (BMR) that address the correlation between diet quality and BMR. The food-habit hypothesis stands as one of the most striking and often-mentioned interspecific patterns to emerge from studies of endothermic energetics. Our main emphasis is the explicit empirical comparison of predictions derived from interspecific studies with data gathered from within-species studies in order to explore the mechanisms and functional significance of the putative adaptive responses encapsulated by the food-habit hypothesis. We suggest that, in addition to concentrating on the relationship among diet quality, internal morphology, and BMR, new studies should also attempt to unravel alternative mechanisms that shape the interaction between diet and BMR, such as enzymatic plasticity, and the use of energy-saving mechanisms, such as torpor. Another avenue for future study is the measurement of the effects of diet quality on other components of the energy budget, such as maximum thermogenic and sustainable metabolic rates. It is possible that the effects of diet quality operate on such components rather than directly on BMR, which might then push or pull along changes in these traits. Results from intraspecific studies suggest that the factors responsible for the association between diet and BMR at an ecological timescale might not be the same as those that promoted the evolution of this correlation. Further analyses should consider how much of a role the proximate and ultimate processes have played in the evolution of BMR.
Resumo:
To assess the structural and functional significance of the N helix (residues 3-13) of avian recombinant troponin C (rTnC), we have constructed NHdel, in which residues 1-11 have been deleted, both in rTnC and in the spectral probe mutant F29W (Pearlstone, J. R., Borgford, T., Chandra, M., Oikawa, K., Kay, C. M., Herzberg, O., Moult, J., Herklotz, A., Reinach, F. C., and Smillie, L.B. (1992) Biochemistry 31, 6545-6553). Comparison of the far- and near-UV CD spectra (±Ca2+) of F29W and F29W/ NHdel and titration of the Ca2+-induced ellipticity and fluorescence changes indicates that the deletion has little effect on the global fold of the molecule but reduces the Ca2+ affinity of the N domain, but not the C domain, by 1.6-1.8-fold. Comparisons of the mutants NHdel, F29W, and F29W/NHdel with rTnC have been made using several functional assays. In reconstituted troponin-tropomyosin actomyosin subfragment 1 and myofibrillar ATPase systems, both F29W and NHdel have significantly reduced Ca2+-activated enzymic activities. These effects are cumulative in the double mutant F29W/ NHdel. On the other hand, maximal isometric tension development in Ca2+-activated reconstituted skinned fibers is not affected with F29W and NHdel, although the Ca2+ sensitivity of NHdel in this system is markedly reduced. We conclude that both mutations, NHdel and F29W, are functionally deleterious, possibly affecting interactions of the N domain with troponin I and/or T.
Resumo:
In this paper we examine the potential of the termites Armitermes euamignathus Silvestri: 1901 and Embiratermes festivellus (Silvestri, 1901) (Isoptera, Termitidae, Nasutitermitinae) to produce neotenics experimentally. Three nests of the mound-building termite A. euamignathus, from the Brazilian cerrado, had their primary queens removed in August 1994. After 12 months, only one mound survived; it had a normal appearance. In this healthy, orphaned colony we found the primary king, six physogastric nymphoid female replacement reproductives, two ergatoid female replacement reproductives, 46 nymphs, several presoldiers, soldiers, workers, larvae and many eggs. These data show that neotenics in A. euamignathus may originate from both workers and nymphs, but nymphoids are produced in larger numbers. The biometric study of nymphs and nymphoids suggests that these brachypterous neotenics were derived from third instar nymphs after a single moult or from four instar nymphs after a reduction of wing bud length. A piece of an E. festivellus nest with some third instar nymphs, soldiers and workers was kept under laboratory conditions. After 12 months, the whole experimental subcolony was examined and appeared to contain two pigmented nymphoid females, two pigmented nymphoid males, only one larva, seven nymphs of the same instar, 148 workers, five soldiers and many eggs. These results also indicate the capacity of the termite E. festivellus to produce nymphoid neotenics. These neotenic females were laying eggs, but they were not physogastric after a year, unlike some nymphoids of the same species collected from natural colonies.