363 resultados para minke whale
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographies.
Resumo:
Edited by George Whale and John Sargeaunt.
Resumo:
At head of title-page:- "Oxberry's edition."
Resumo:
To investigate the incidence of non-lethal predation in Southern Hemisphere whales, more than 3400 fluke-identification photographs from resight histories of 1436 east Australian humpback whales were examined for evidence of predatory markings. Photographs were obtained from 1984 to 1996 at various locations along the east coast of Australia, from northern Queensland to southern New South Wales. Photographs were classified in terms of the level and type of scarring. The possible predator and whether the markings appeared fresh were also noted. In all, 17% of identified east Australian humpbacks possessed some form of predatory scarring, 57% of which was minor and 43% major. Almost all predatory scarring was consistent with that inflicted by killer whales. Only three whales demonstrated an increase in the level of predatory scarring after their first sightings. Two incidents of fresh scarring were recorded, and one fatal killer whale attack on a humpback whale calf was directly observed. The overall level of predatory scarring found in this study is comparable to those found in studies for Northern Hemisphere humpback whales. The low incidence of adult whales showing their first sign of predatory scarring after their initial sighting, and the small number possessing recent scarring, support the idea that east Australian humpback whales experience most predatory attacks early in life.
Resumo:
Cytochrome P450 monooxygenases, one of the most important classes of heme-thiolate proteins, have attracted considerable interest in the biochemical community because of its catalytic versatility, substrate diversity and great number in the superfamily. Although P450s are capable of catalyzing numerous difficult oxidation reactions, the relatively low stability, low turnover rates and the need of electron-donating cofactors have limited their practical biotechnological and pharmaceutical applications as isolated enzymes. The goal of this study is to tailor such heme-thiolate proteins into efficient biocatalysts with high specificity and selectivity by protein engineering and to better understand the structure-function relationship in cytochromes P450. In the effort to engineer P450cam, the prototype member of the P450 superfamily, into an efficient peroxygenase that utilizes hydrogen peroxide via the “peroxide-shunt” pathway, site-directed mutagenesis has been used to elucidate the critical roles of hydrophobic residues in the active site. Various biophysical, biochemical and spectroscopic techniques have been utilized to investigate the wild-type and mutant proteins. Three important P450cam variants were obtained showing distinct structural and functional features. In P450camV247H mutant, which exhibited almost identical spectral properties with the wild-type, it is demonstrated that a single amino acid switch turned the monooxygenase into an efficient preoxidase by increasing the peroxidase activity nearly one thousand folds. In order to tune the distal pocket of P450cam with polar residues, Leu 246 was replaced with a basic residue, lysine, resulting in a mutant with spectral features identical to P420, the inactive species of P450. But this inactive-species-like mutant showed catalytic activities without the facilitation of any cofactors. By substituting Gly 248 with a histidine, a novel Cys-Fe-His ligation set was obtained in P450cam which represented the very rare case of His ligation in heme-thiolate proteins. In addition to serving as a convenient model for hemoprotein structural studies, the G248H mutant also provided evidence about the nature of the axial ligand in cytochrome P420 and other engineered hemoproteins with thiolate ligations. Furthermore, attempts have been made to replace the proximal ligand in sperm whale myoglobin to construct a heme-thiolate protein model by mimicking the protein environment of cytochrome P450cam and chloroperoxidase.
Resumo:
Cytochrome P450 monooxygenases, one of the most important classes of heme-thiolate proteins, have attracted considerable interest in the biochemical community because of its catalytic versatility, substrate diversity and great number in the superfamily. Although P450s are capable of catalyzing numerous difficult oxidation reactions, the relatively low stability, low turnover rates and the need of electron-donating cofactors have limited their practical biotechnological and pharmaceutical applications as isolated enzymes. The goal of this study is to tailor such heme-thiolate proteins into efficient biocatalysts with high specificity and selectivity by protein engineering and to better understand the structure-function relationship in cytochromes P450. In the effort to engineer P450cam, the prototype member of the P450 superfamily, into an efficient peroxygenase that utilizes hydrogen peroxide via the “peroxide-shunt” pathway, site-directed mutagenesis has been used to elucidate the critical roles of hydrophobic residues in the active site. Various biophysical, biochemical and spectroscopic techniques have been utilized to investigate the wild-type and mutant proteins. Three important P450cam variants were obtained showing distinct structural and functional features. In P450camV247H mutant, which exhibited almost identical spectral properties with the wild-type, it is demonstrated that a single amino acid switch turned the monooxygenase into an efficient preoxidase by increasing the peroxidase activity nearly one thousand folds. In order to tune the distal pocket of P450cam with polar residues, Leu 246 was replaced with a basic residue, lysine, resulting in a mutant with spectral features identical to P420, the inactive species of P450. But this inactive-species-like mutant showed catalytic activities without the facilitation of any cofactors. By substituting Gly 248 with a histidine, a novel Cys-Fe-His ligation set was obtained in P450cam which represented the very rare case of His ligation in heme-thiolate proteins. In addition to serving as a convenient model for hemoprotein structural studies, the G248H mutant also provided evidence about the nature of the axial ligand in cytochrome P420 and other engineered hemoproteins with thiolate ligations. Furthermore, attempts have been made to replace the proximal ligand in sperm whale myoglobin to construct a heme-thiolate protein model by mimicking the protein environment of cytochrome P450cam and chloroperoxidase.
Resumo:
The marine ecosystem on the eastern shelf of the Antarctic Peninsula was surveyed 5 and 12 years after the climate-induced collapse of the Larsen A and B ice shelves. An impoverished benthic fauna was discovered, that included deep-sea species presumed to be remnants from ice-covered conditions. The current structure of various ecosystem components appears to result from extremely different response rates to the change from an oligotrophic sub-ice-shelf ecosystem to a productive shelf ecosystem. Meiobenthic communities remained impoverished only inside the embayments. On local scales, macro- and mega-epibenthic diversity was generally low, with pioneer species and typical Antarctic megabenthic shelf species interspersed. Antarctic Minke whales and seals utilised the Larsen A/B area to feed on presumably newly established krill and pelagic fish biomass. Ecosystem impacts also extended well beyond the zone of ice-shelf collapse, with areas of high benthic disturbance resulting from scour by icebergs discharged from the Larsen embayments.
Resumo:
One the most interesting features of ocean sedimentation is the manganese formations on the surface of the ocean floor in some areas. These are especially widespread in the Pacific Ocean as concretions, grains, and crusts on rock fragments and bedrock outcrops. Iron-manganese concretions are the most abundant as they completely cover about 10% of the bottom of the Pacific Ocean where there are ore concentrations. The concretions occupy from 20-50% of the bottom and up to 80-90% on separate submarine rises. Such concretions are found in different types of bottom deposits, from abyssal red clays to terrigenous muds, but they occur most widely in red clays and quite often in carbonate muds. Their shape and their dimensions are very diverse and change from place to place, from station to station, varying from 0.5-20 cm. They may be oval, globular, reniform, or slaggy and often they are fiat or isometric concretions of an indefinite shape. The concretions generally have nuclei of pumice, basalt fragments, clayey and tuffaceous material, sharks' teeth, whale ossicles, and fossil sponges. Most concretions have concentric layers, combined with dendritic ramifications of iron and manganese oxides.
Resumo:
Background: To determine the portion sizes of traditional and non-traditional foods being consumed by Inuit adults in three remote communities in Nunavut, Canada. Methods. A cross-sectional study was carried out between June and October, 2008. Trained field workers collected dietary data using a culturally appropriate, validated quantitative food frequency questionnaire (QFFQ) developed specifically for the study population. Results: Caribou, muktuk (whale blubber and skin) and Arctic char (salmon family), were the most commonly consumed traditional foods; mean portion sizes for traditional foods ranged from 10 g for fermented seal fat to 424 g for fried caribou. Fried bannock and white bread were consumed by >85% of participants; mean portion sizes for these foods were 189 g and 70 g, respectively. Sugar-sweetened beverages and energy-dense, nutrient-poor foods were also widely consumed. Mean portion sizes for regular pop and sweetened juices with added sugar were 663 g and 572 g, respectively. Mean portion sizes for potato chips, pilot biscuits, cakes, chocolate and cookies were 59 g, 59 g, 106 g, 59 g, and 46 g, respectively. Conclusions: The present study provides further evidence of the nutrition transition that is occurring among Inuit in the Canadian Arctic. It also highlights a number of foods and beverages that could be targeted in future nutritional intervention programs aimed at obesity and diet-related chronic disease prevention in these and other Inuit communities.
Resumo:
Human use of the oceans is increasingly in conflict with conservation of endangered species. Methods for managing the spatial and temporal placement of industries such as military, fishing, transportation and offshore energy, have historically been post hoc; i.e. the time and place of human activity is often already determined before assessment of environmental impacts. In this dissertation, I build robust species distribution models in two case study areas, US Atlantic (Best et al. 2012) and British Columbia (Best et al. 2015), predicting presence and abundance respectively, from scientific surveys. These models are then applied to novel decision frameworks for preemptively suggesting optimal placement of human activities in space and time to minimize ecological impacts: siting for offshore wind energy development, and routing ships to minimize risk of striking whales. Both decision frameworks relate the tradeoff between conservation risk and industry profit with synchronized variable and map views as online spatial decision support systems.
For siting offshore wind energy development (OWED) in the U.S. Atlantic (chapter 4), bird density maps are combined across species with weights of OWED sensitivity to collision and displacement and 10 km2 sites are compared against OWED profitability based on average annual wind speed at 90m hub heights and distance to transmission grid. A spatial decision support system enables toggling between the map and tradeoff plot views by site. A selected site can be inspected for sensitivity to a cetaceans throughout the year, so as to capture months of the year which minimize episodic impacts of pre-operational activities such as seismic airgun surveying and pile driving.
Routing ships to avoid whale strikes (chapter 5) can be similarly viewed as a tradeoff, but is a different problem spatially. A cumulative cost surface is generated from density surface maps and conservation status of cetaceans, before applying as a resistance surface to calculate least-cost routes between start and end locations, i.e. ports and entrance locations to study areas. Varying a multiplier to the cost surface enables calculation of multiple routes with different costs to conservation of cetaceans versus cost to transportation industry, measured as distance. Similar to the siting chapter, a spatial decisions support system enables toggling between the map and tradeoff plot view of proposed routes. The user can also input arbitrary start and end locations to calculate the tradeoff on the fly.
Essential to the input of these decision frameworks are distributions of the species. The two preceding chapters comprise species distribution models from two case study areas, U.S. Atlantic (chapter 2) and British Columbia (chapter 3), predicting presence and density, respectively. Although density is preferred to estimate potential biological removal, per Marine Mammal Protection Act requirements in the U.S., all the necessary parameters, especially distance and angle of observation, are less readily available across publicly mined datasets.
In the case of predicting cetacean presence in the U.S. Atlantic (chapter 2), I extracted datasets from the online OBIS-SEAMAP geo-database, and integrated scientific surveys conducted by ship (n=36) and aircraft (n=16), weighting a Generalized Additive Model by minutes surveyed within space-time grid cells to harmonize effort between the two survey platforms. For each of 16 cetacean species guilds, I predicted the probability of occurrence from static environmental variables (water depth, distance to shore, distance to continental shelf break) and time-varying conditions (monthly sea-surface temperature). To generate maps of presence vs. absence, Receiver Operator Characteristic (ROC) curves were used to define the optimal threshold that minimizes false positive and false negative error rates. I integrated model outputs, including tables (species in guilds, input surveys) and plots (fit of environmental variables, ROC curve), into an online spatial decision support system, allowing for easy navigation of models by taxon, region, season, and data provider.
For predicting cetacean density within the inner waters of British Columbia (chapter 3), I calculated density from systematic, line-transect marine mammal surveys over multiple years and seasons (summer 2004, 2005, 2008, and spring/autumn 2007) conducted by Raincoast Conservation Foundation. Abundance estimates were calculated using two different methods: Conventional Distance Sampling (CDS) and Density Surface Modelling (DSM). CDS generates a single density estimate for each stratum, whereas DSM explicitly models spatial variation and offers potential for greater precision by incorporating environmental predictors. Although DSM yields a more relevant product for the purposes of marine spatial planning, CDS has proven to be useful in cases where there are fewer observations available for seasonal and inter-annual comparison, particularly for the scarcely observed elephant seal. Abundance estimates are provided on a stratum-specific basis. Steller sea lions and harbour seals are further differentiated by ‘hauled out’ and ‘in water’. This analysis updates previous estimates (Williams & Thomas 2007) by including additional years of effort, providing greater spatial precision with the DSM method over CDS, novel reporting for spring and autumn seasons (rather than summer alone), and providing new abundance estimates for Steller sea lion and northern elephant seal. In addition to providing a baseline of marine mammal abundance and distribution, against which future changes can be compared, this information offers the opportunity to assess the risks posed to marine mammals by existing and emerging threats, such as fisheries bycatch, ship strikes, and increased oil spill and ocean noise issues associated with increases of container ship and oil tanker traffic in British Columbia’s continental shelf waters.
Starting with marine animal observations at specific coordinates and times, I combine these data with environmental data, often satellite derived, to produce seascape predictions generalizable in space and time. These habitat-based models enable prediction of encounter rates and, in the case of density surface models, abundance that can then be applied to management scenarios. Specific human activities, OWED and shipping, are then compared within a tradeoff decision support framework, enabling interchangeable map and tradeoff plot views. These products make complex processes transparent for gaming conservation, industry and stakeholders towards optimal marine spatial management, fundamental to the tenets of marine spatial planning, ecosystem-based management and dynamic ocean management.