966 resultados para microbial ecology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used polyurethane foam units (PFUs) to collect persistent organic pollutants (POPs) from four sites in Baiyangdian Lake in July 2003. Following extraction from the PFUs, relative concentrations of seven organochlorine pesticides (OCPs) and ten polychlorinated biphenyls (PCBs) were determined by gas chromatography. OCPs and PCBs were detected in the microbial communities from all the four sampling stations. In terms of the total concentration of POPs (OCPs+ PCBs), two river estuary stations had more POP (18.45 mu g/L and 9.77 mu g/L) than the two mid-lake stations (4.75 mu g/L and 5.21 mu g/L), indicating that Baiyangdian Lake was significantly impacted by inflow from the Fu River and Baigou River.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most biological diversity on this planet is probably harbored in soils. Understanding the diversity and function of the microbiological component of soil poses great challenges that are being overcome by the application of molecular biological approaches. This review covers one of many approaches being used: separation of polymerase chain reaction (PCR) amplicons using denaturing gradient gel electrophoresis (DGGE). Extraction of nucleic acids directly from soils allows the examination of a community without the limitation posed by cultivation. Polymerase chain reaction provides a means to increase the numbers of a target for its detection on gels. Using the rRNA genes as a target for PCR provides phylogenetic information on populations comprising communities. Fingerprints produced by this method have allowed spatial and temporal comparisons of soil communities within and between locations or among treatments. Numerous samples can be compared because of the rapid high throughput nature of this method. Scientists now have the means to begin addressing complex ecological questions about the spatial, temporal, and nutritional interactions faced by microbes in the soil environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terminal restriction fragment length polymorphism (T-RFLP) analysis is a polymerase chain reaction (PCR)-fingerprinting method that is commonly used for comparative microbial community analysis. The method can be used to analyze communities of bacteria, archaea, fungi, other phylogenetic groups or subgroups, as well as functional genes. The method is rapid, highly reproducible, and often yields a higher number of operational taxonomic units than other, commonly used PCR-fingerprinting methods. Sizing of terminal restriction fragments (T-RFs) can now be done using capillary sequencing technology allowing samples contained in 96- or 384-well plates to be sized in an overnight run. Many multivariate statistical approaches have been used to interpret and compare T-RFLP fingerprints derived from different communities. Detrended correspondence analysis and the additive main effects with multiplicative interaction model are particularly useful for revealing trends in T-RFLP data. Due to biases inherent in the method, linking the size of T-RFs derived from complex communities to existing sequence databases to infer their taxonomic position is not very robust. This approach has been used successfully, however, to identify and follow the dynamics of members within very simple or model communities. The T-RFLP approach has been used successfully to analyze the composition of microbial communities in soil, water, marine, and lacustrine sediments, biofilms, feces, in and on plant tissues, and in the digestive tracts of insects and mammals. The T-RFLP method is a user-friendly molecular approach to microbial community analysis that is adding significant information to studies of microbial populations in many environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uptake of 14C glucose by natural microbial populations has been studied in the Severn Estuary and Bristol Channel, U.K.; the turbidity (suspended solids) in the estuary varied between < 5 mg · 1−1 at the seaward extremity to >800 mg · 1−1 in the estuary proper. The heterotrophic potential, Vm, was found to correlate with turbidity and particulate organic carbon but there was no correlation between microbial biomass, as assessed by plate counts, and turbidity or Vm; measurement of Vm ranged from 0.9 × 10−4 to 288 × 10−4μgC·1−1·h−1 and turnover time from <2 to >100 h. In 17 out of 42 experiments, the uptake of 14C glucose did not conform to Michaelis kinetics and in five of these experiments the data suggested that there may be a threshold of glucose concentration below which there is no uptake.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of ocean acidification on the composition of the active bacterial and archaeal community within Arctic surface sediment was analysed in detail using 16S rRNA 454 pyrosequencing. Intact sediment cores were collected and exposed to one of five different pCO(2) concentrations [380 (present day), 540, 750, 1120 and 3000 atm] and RNA extracted after a period of 14 days exposure. Measurements of diversity and multivariate similarity indicated very little difference between pCO(2) treatments. Only when the highest and lowest pCO(2) treatments were compared were significant differences evident, namely increases in the abundance of operational taxonomic units most closely related to the Halobacteria and differences to the presence/absence structure of the Planctomycetes. The relative abundance of members of the classes Planctomycetacia and Nitrospira increased with increasing pCO(2) concentration, indicating that these groups may be able to take advantage of changing pH or pCO(2) conditions. The modest response of the active microbial communities associated with these sediments may be due to the low and fluctuating pore-water pH already experienced by sediment microbes, a result of the pH buffering capacity of marine sediments, or due to currently unknown factors. Further research is required to fully understand the impact of elevated CO2 on sediment physicochemical parameters, biogeochemistry and microbial community dynamics.