958 resultados para micro-CT,cone beam Ct,trabecular tissue,image segmentation,computed tomography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodegradable magnesium plate/screw osteosynthesis systems were implanted on the frontal bone of adult miniature pigs. The chosen implant geometries were based on existing titanium systems used for the treatment of facial fractures. The aim of this study was to evaluate the in vivo degradation and tissue response of the magnesium alloy WE43 with and without a plasma electrolytic surface coating. Of 14 animals, 6 received magnesium implants with surface modification (coated), 6 without surface modification (uncoated), and 2 titanium implants. Radiological examination of the skull was performed at 1, 4, and 8 weeks post-implantation. After euthanasia at 12 and 24 weeks, X-ray, computed tomography, and microfocus computed tomography analyses and histological and histomorphological examinations of the bone/implant blocks were performed. The results showed a good tolerance of the plate/screw system without wound healing disturbance. In the radiological examination, gas pocket formation was found mainly around the uncoated plates 4 weeks after surgery. The micro-CT and histological analyses showed significantly lower corrosion rates and increased bone density and bone implant contact area around the coated screws compared to the uncoated screws at both endpoints. This study shows promising results for the further development of coated magnesium implants for the osteosynthesis of the facial skeleton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the issue of fully automatic segmentation of a hip CT image with the goal to preserve the joint structure for clinical applications in hip disease diagnosis and treatment. For this purpose, we propose a Multi-Atlas Segmentation Constrained Graph (MASCG) method. The MASCG method uses multi-atlas based mesh fusion results to initialize a bone sheetness based multi-label graph cut for an accurate hip CT segmentation which has the inherent advantage of automatic separation of the pelvic region from the bilateral proximal femoral regions. We then introduce a graph cut constrained graph search algorithm to further improve the segmentation accuracy around the bilateral hip joint regions. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 15-fold cross validation. When the present approach was compared to manual segmentation, an average surface distance error of 0.30 mm, 0.29 mm, and 0.30 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. A further look at the bilateral hip joint regions demonstrated an average surface distance error of 0.16 mm, 0.21 mm and 0.20 mm for the acetabulum, the left femoral head, and the right femoral head, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intracavitary brachytherapy (ICB) combined with external beam irradiation for treatment of cervical cancer is highly successful in achieving local control. The M.D. Anderson Cancer Center employs Fletcher Suit Delclos (FSD) applicators. FSD applicators contain shields to limit dose to critical structures. Dosimetric evaluation of ICB implants is limited to assessing dose at reference points. These points serve as surrogates for treatment intensity and critical structure dose. Several studies have mentioned that the ICRU38 reference points inadequately characterize the dose distribution. Also, the ovoid shields are rarely considered in dosimetry. ^ The goal of this dissertation was to ascertain the influence of the ovoid shields on patient dose distributions. Monte Carlo dosimetry (MCD) was applied to patient computed tomography(CT) scans. These data were analyzed to determine the effect of the shields on dose to standard reference points and the bladder and rectum. The hypothesis of this work is that the ICRU38 bladder and rectal points computed conventionally are not clinically acceptable surrogates for the maximum dose points as determined by MCD. ^ MCD was applied to the tandem and ovoids. The FSD ovoids and tandem were modeled in a single input file that allowed dose to be calculated for any patient. Dose difference surface histograms(DDSH) were computed for the bladder and rectum. Reference point doses were compared between shielded and unshielded ovoids, and a commercial treatment planning system. ^ The results of this work showed the tandem tip screw caused a 33% reduction in dose. The ovoid shields reduced the dose by a maximum of 48.9%. DDSHs revealed on average 5% of the bladder surface area was spared 53 cGy and 5% of the rectal surface area was spared 195 cGy. The ovoid shields on average reduced the dose by 18% for the bladder point and 25% for the rectal point. The Student's t-test revealed the ICRU38 bladder and rectal points do not predict the maximum dose for these organs. ^ It is concluded that modeling the tandem and ovoid internal structures is necessary for accurate dose calculations, the bladder shielding segments may not be necessary, and that the ICRU38 bladder point is irrelevant. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La planificación pre-operatoria se ha convertido en una tarea esencial en cirugías y terapias de marcada complejidad, especialmente aquellas relacionadas con órgano blando. Un ejemplo donde la planificación preoperatoria tiene gran interés es la cirugía hepática. Dicha planificación comprende la detección e identificación precisa de las lesiones individuales y vasos así como la correcta segmentación y estimación volumétrica del hígado funcional. Este proceso es muy importante porque determina tanto si el paciente es un candidato adecuado para terapia quirúrgica como la definición del abordaje a seguir en el procedimiento. La radioterapia de órgano blando es un segundo ejemplo donde la planificación se requiere tanto para la radioterapia externa convencional como para la radioterapia intraoperatoria. La planificación comprende la segmentación de tumor y órganos vulnerables y la estimación de la dosimetría. La segmentación de hígado funcional y la estimación volumétrica para planificación de la cirugía se estiman habitualmente a partir de imágenes de tomografía computarizada (TC). De igual modo, en la planificación de radioterapia, los objetivos de la radiación se delinean normalmente sobre TC. Sin embargo, los avances en las tecnologías de imagen de resonancia magnética (RM) están ofreciendo progresivamente ventajas adicionales. Por ejemplo, se ha visto que el ratio de detección de metástasis hepáticas es significativamente superior en RM con contraste Gd–EOB–DTPA que en TC. Por tanto, recientes estudios han destacado la importancia de combinar la información de TC y RM para conseguir el mayor nivel posible de precisión en radioterapia y para facilitar una descripción precisa de las lesiones del hígado. Con el objetivo de mejorar la planificación preoperatoria en ambos escenarios se precisa claramente de un algoritmo de registro no rígido de imagen. Sin embargo, la gran mayoría de sistemas comerciales solo proporcionan métodos de registro rígido. Las medidas de intensidad de voxel han demostrado ser criterios de similitud de imágenes robustos, y, entre ellas, la Información Mutua (IM) es siempre la primera elegida en registros multimodales. Sin embargo, uno de los principales problemas de la IM es la ausencia de información espacial y la asunción de que las relaciones estadísticas entre las imágenes son homogéneas a lo largo de su domino completo. La hipótesis de esta tesis es que la incorporación de información espacial de órganos al proceso de registro puede mejorar la robustez y calidad del mismo, beneficiándose de la disponibilidad de las segmentaciones clínicas. En este trabajo, se propone y valida un esquema de registro multimodal no rígido 3D usando una nueva métrica llamada Información Mutua Centrada en el Órgano (Organ-Focused Mutual Information metric (OF-MI)) y se compara con la formulación clásica de la Información Mutua. Esto permite mejorar los resultados del registro en áreas problemáticas incorporando información regional al criterio de similitud, beneficiándose de la disponibilidad real de segmentaciones en protocolos estándares clínicos, y permitiendo que la dependencia estadística entre las dos modalidades de imagen difiera entre órganos o regiones. El método propuesto se ha aplicado al registro de TC y RM con contraste Gd–EOB–DTPA así como al registro de imágenes de TC y MR para planificación de radioterapia intraoperatoria rectal. Adicionalmente, se ha desarrollado un algoritmo de apoyo de segmentación 3D basado en Level-Sets para la incorporación de la información de órgano en el registro. El algoritmo de segmentación se ha diseñado específicamente para la estimación volumétrica de hígado sano funcional y ha demostrado un buen funcionamiento en un conjunto de imágenes de TC abdominales. Los resultados muestran una mejora estadísticamente significativa de OF-MI comparada con la Información Mutua clásica en las medidas de calidad de los registros; tanto con datos simulados (p<0.001) como con datos reales en registro hepático de TC y RM con contraste Gd– EOB–DTPA y en registro para planificación de radioterapia rectal usando OF-MI multi-órgano (p<0.05). Adicionalmente, OF-MI presenta resultados más estables con menor dispersión que la Información Mutua y un comportamiento más robusto con respecto a cambios en la relación señal-ruido y a la variación de parámetros. La métrica OF-MI propuesta en esta tesis presenta siempre igual o mayor precisión que la clásica Información Mutua y consecuentemente puede ser una muy buena alternativa en aplicaciones donde la robustez del método y la facilidad en la elección de parámetros sean particularmente importantes. Abstract Pre-operative planning has become an essential task in complex surgeries and therapies, especially for those affecting soft tissue. One example where soft tissue preoperative planning is of high interest is liver surgery. It involves the accurate detection and identification of individual liver lesions and vessels as well as the proper functional liver segmentation and volume estimation. This process is very important because it determines whether the patient is a suitable candidate for surgical therapy and the type of procedure. Soft tissue radiation therapy is a second example where planning is required for both conventional external and intraoperative radiotherapy. It involves the segmentation of the tumor target and vulnerable organs and the estimation of the planned dose. Functional liver segmentations and volume estimations for surgery planning are commonly estimated from computed tomography (CT) images. Similarly, in radiation therapy planning, targets to be irradiated and healthy and vulnerable tissues to be protected from irradiation are commonly delineated on CT scans. However, developments in magnetic resonance imaging (MRI) technology are progressively offering advantages. For instance, the hepatic metastasis detection rate has been found to be significantly higher in Gd–EOB–DTPAenhanced MRI than in CT. Therefore, recent studies highlight the importance of combining the information from CT and MRI to achieve the highest level of accuracy in radiotherapy and to facilitate accurate liver lesion description. In order to improve those two soft tissue pre operative planning scenarios, an accurate nonrigid image registration algorithm is clearly required. However, the vast majority of commercial systems only provide rigid registration. Voxel intensity measures have been shown to be robust measures of image similarity, and among them, Mutual Information (MI) is always the first candidate in multimodal registrations. However, one of the main drawbacks of Mutual Information is the absence of spatial information and the assumption that statistical relationships between images are the same over the whole domain of the image. The hypothesis of the present thesis is that incorporating spatial organ information into the registration process may improve the registration robustness and quality, taking advantage of the clinical segmentations availability. In this work, a multimodal nonrigid 3D registration framework using a new Organ- Focused Mutual Information metric (OF-MI) is proposed, validated and compared to the classical formulation of the Mutual Information (MI). It allows improving registration results in problematic areas by adding regional information into the similitude criterion taking advantage of actual segmentations availability in standard clinical protocols and allowing the statistical dependence between the two modalities differ among organs or regions. The proposed method is applied to CT and T1 weighted delayed Gd–EOB–DTPA-enhanced MRI registration as well as to register CT and MRI images in rectal intraoperative radiotherapy planning. Additionally, a 3D support segmentation algorithm based on Level-Sets has been developed for the incorporation of the organ information into the registration. The segmentation algorithm has been specifically designed for the healthy and functional liver volume estimation demonstrating good performance in a set of abdominal CT studies. Results show a statistical significant improvement of registration quality measures with OF-MI compared to MI with both simulated data (p<0.001) and real data in liver applications registering CT and Gd–EOB–DTPA-enhanced MRI and in registration for rectal radiotherapy planning using multi-organ OF-MI (p<0.05). Additionally, OF-MI presents more stable results with smaller dispersion than MI and a more robust behavior with respect to SNR changes and parameters variation. The proposed OF-MI always presents equal or better accuracy than the classical MI and consequently can be a very convenient alternative within applications where the robustness of the method and the facility to choose the parameters are particularly important.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Accurate delineation of the rectum is of high importance in off-line adaptive radiation therapy since it is a major dose-limiting organ in prostate cancer radiotherapy. The intensity-based deformable image registration (DIR) methods cannot create a correct spatial transformation if there is no correspondence between the template and the target images. The variation of rectal filling, gas, or feces, creates a noncorrespondence in image intensities that becomes a great obstacle for intensity-based DIR. Methods: In this study the authors have designed and implemented a semiautomatic method to create a rectum mask in pelvic computed tomography (CT) images. The method, that includes a DIR based on the demons algorithm, has been tested in 13 prostate cancer cases, each comprising of two CT scans, for a total of 26 CT scans. Results: The use of the manual segmentation in the planning image and the proposed rectum mask method (RMM) method in the daily image leads to an improvement in the DIR performance in pelvic CT images, obtaining a mean value of overlap volume index = 0.89, close to the values obtained using the manual segmentations in both images. Conclusions: The application of the RMM method in the daily image and the manual segmentations in the planning image during prostate cancer treatments increases the performance of the registration in presence of rectal fillings, obtaining very good agreement with a physician's manual contours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Accurate delineation of the rectum is of high importance in off-line adaptive radiation therapy since it is a major dose-limiting organ in prostate cancer radiotherapy. The intensity-based deformable image registration (DIR) methods cannot create a correct spatial transformation if there is no correspondence between the template and the target images. The variation of rectal filling, gas, or feces, creates a noncorrespondence in image intensities that becomes a great obstacle for intensity-based DIR. Methods: In this study the authors have designed and implemented a semiautomatic method to create a rectum mask in pelvic computed tomography (CT) images. The method, that includes a DIR based on the demons algorithm, has been tested in 13 prostate cancer cases, each comprising of two CT scans, for a total of 26 CT scans. Results: The use of the manual segmentation in the planning image and the proposed rectum mask method (RMM) method in the daily image leads to an improvement in the DIR performance in pelvic CT images, obtaining a mean value of overlap volume index = 0.89, close to the values obtained using the manual segmentations in both images. Conclusions: The application of the RMM method in the daily image and the manual segmentations in the planning image during prostate cancer treatments increases the performance of the registration in presence of rectal fillings, obtaining very good agreement with a physician's manual contours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El cáncer de próstata es el tipo de cáncer con mayor prevalencia entre los hombres del mundo occidental y, pese a tener una alta tasa de supervivencia relativa, es la segunda mayor causa de muerte por cáncer en este sector de la población. El tratamiento de elección frente al cáncer de próstata es, en la mayoría de los casos, la radioterapia externa. Las técnicas más modernas de radioterapia externa, como la radioterapia modulada en intensidad, permiten incrementar la dosis en el tumor mientras se reduce la dosis en el tejido sano. Sin embargo, la localización del volumen objetivo varía con el día de tratamiento, y se requieren movimientos muy pequeños de los órganos para sacar partes del volumen objetivo fuera de la región terapéutica, o para introducir tejidos sanos críticos dentro. Para evitar esto se han desarrollado técnicas más avanzadas, como la radioterapia guiada por imagen, que se define por un manejo más preciso de los movimientos internos mediante una adaptación de la planificación del tratamiento basada en la información anatómica obtenida de imágenes de tomografía computarizada (TC) previas a la sesión terapéutica. Además, la radioterapia adaptativa añade la información dosimétrica de las fracciones previas a la información anatómica. Uno de los fundamentos de la radioterapia adaptativa es el registro deformable de imágenes, de gran utilidad a la hora de modelar los desplazamientos y deformaciones de los órganos internos. Sin embargo, su utilización conlleva nuevos retos científico-tecnológicos en el procesamiento de imágenes, principalmente asociados a la variabilidad de los órganos, tanto en localización como en apariencia. El objetivo de esta tesis doctoral es mejorar los procesos clínicos de delineación automática de contornos y de cálculo de dosis acumulada para la planificación y monitorización de tratamientos con radioterapia adaptativa, a partir de nuevos métodos de procesamiento de imágenes de TC (1) en presencia de contrastes variables, y (2) cambios de apariencia del recto. Además, se pretende (3) proveer de herramientas para la evaluación de la calidad de los contornos obtenidos en el caso del gross tumor volumen (GTV). Las principales contribuciones de esta tesis doctoral son las siguientes: _ 1. La adaptación, implementación y evaluación de un algoritmo de registro basado en el flujo óptico de la fase de la imagen como herramienta para el cálculo de transformaciones no-rígidas en presencia de cambios de intensidad, y su aplicabilidad a tratamientos de radioterapia adaptativa en cáncer de próstata con uso de agentes de contraste radiológico. Los resultados demuestran que el algoritmo seleccionado presenta mejores resultados cualitativos en presencia de contraste radiológico en la vejiga, y no distorsiona la imagen forzando deformaciones poco realistas. 2. La definición, desarrollo y validación de un nuevo método de enmascaramiento de los contenidos del recto (MER), y la evaluación de su influencia en el procedimiento de radioterapia adaptativa en cáncer de próstata. Las segmentaciones obtenidas mediante el MER para la creación de máscaras homogéneas en las imágenes de sesión permiten mejorar sensiblemente los resultados de los algoritmos de registro en la región rectal. Así, el uso de la metodología propuesta incrementa el índice de volumen solapado entre los contornos manuales y automáticos del recto hasta un valor del 89%, cercano a los resultados obtenidos usando máscaras manuales para el registro de las dos imágenes. De esta manera se pueden corregir tanto el cálculo de los nuevos contornos como el cálculo de la dosis acumulada. 3. La definición de una metodología de evaluación de la calidad de los contornos del GTV, que permite la representación de la distribución espacial del error, adaptándola a volúmenes no-convexos como el formado por la próstata y las vesículas seminales. Dicha metodología de evaluación, basada en un nuevo algoritmo de reconstrucción tridimensional y una nueva métrica de cuantificación, presenta resultados precisos con una gran resolución espacial en un tiempo despreciable frente al tiempo de registro. Esta nueva metodología puede ser una herramienta útil para la comparación de distintos algoritmos de registro deformable orientados a la radioterapia adaptativa en cáncer de próstata. En conclusión, el trabajo realizado en esta tesis doctoral corrobora las hipótesis de investigación postuladas, y pretende servir como cimiento de futuros avances en el procesamiento de imagen médica en los tratamientos de radioterapia adaptativa en cáncer de próstata. Asimismo, se siguen abriendo nuevas líneas de aplicación futura de métodos de procesamiento de imágenes médicas con el fin de mejorar los procesos de radioterapia adaptativa en presencia de cambios de apariencia de los órganos, e incrementar la seguridad del paciente. I.2 Inglés Prostate cancer is the most prevalent cancer amongst men in the Western world and, despite having a relatively high survival rate, is the second leading cause of cancer death in this sector of the population. The treatment of choice against prostate cancer is, in most cases, external beam radiation therapy. The most modern techniques of external radiotherapy, as intensity modulated radiotherapy, allow increasing the dose to the tumor whilst reducing the dose to healthy tissue. However, the location of the target volume varies with the day of treatment, and very small movements of the organs are required to pull out parts of the target volume outside the therapeutic region, or to introduce critical healthy tissues inside. Advanced techniques, such as the image-guided radiotherapy (IGRT), have been developed to avoid this. IGRT is defined by more precise handling of internal movements by adapting treatment planning based on the anatomical information obtained from computed tomography (CT) images prior to the therapy session. Moreover, the adaptive radiotherapy adds dosimetric information of previous fractions to the anatomical information. One of the fundamentals of adaptive radiotherapy is deformable image registration, very useful when modeling the displacements and deformations of the internal organs. However, its use brings new scientific and technological challenges in image processing, mainly associated to the variability of the organs, both in location and appearance. The aim of this thesis is to improve clinical processes of automatic contour delineation and cumulative dose calculation for planning and monitoring of adaptive radiotherapy treatments, based on new methods of CT image processing (1) in the presence of varying contrasts, and (2) rectum appearance changes. It also aims (3) to provide tools for assessing the quality of contours obtained in the case of gross tumor volume (GTV). The main contributions of this PhD thesis are as follows: 1. The adaptation, implementation and evaluation of a registration algorithm based on the optical flow of the image phase as a tool for the calculation of non-rigid transformations in the presence of intensity changes, and its applicability to adaptive radiotherapy treatment in prostate cancer with use of radiological contrast agents. The results demonstrate that the selected algorithm shows better qualitative results in the presence of radiological contrast agents in the urinary bladder, and does not distort the image forcing unrealistic deformations. 2. The definition, development and validation of a new method for masking the contents of the rectum (MER, Spanish acronym), and assessing their impact on the process of adaptive radiotherapy in prostate cancer. The segmentations obtained by the MER for the creation of homogenous masks in the session CT images can improve significantly the results of registration algorithms in the rectal region. Thus, the use of the proposed methodology increases the volume overlap index between manual and automatic contours of the rectum to a value of 89%, close to the results obtained using manual masks for both images. In this way, both the calculation of new contours and the calculation of the accumulated dose can be corrected. 3. The definition of a methodology for assessing the quality of the contours of the GTV, which allows the representation of the spatial distribution of the error, adapting it to non-convex volumes such as that formed by the prostate and seminal vesicles. Said evaluation methodology, based on a new three-dimensional reconstruction algorithm and a new quantification metric, presents accurate results with high spatial resolution in a time negligible compared to the registration time. This new approach may be a useful tool to compare different deformable registration algorithms oriented to adaptive radiotherapy in prostate cancer In conclusion, this PhD thesis corroborates the postulated research hypotheses, and is intended to serve as a foundation for future advances in medical image processing in adaptive radiotherapy treatment in prostate cancer. In addition, it opens new future applications for medical image processing methods aimed at improving the adaptive radiotherapy processes in the presence of organ’s appearance changes, and increase the patient safety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate detection of liver lesions is of great importance in hepatic surgery planning. Recent studies have shown that the detection rate of liver lesions is significantly higher in gadoxetic acid-enhanced magnetic resonance imaging (Gd–EOB–DTPA-enhanced MRI) than in contrast-enhanced portal-phase computed tomography (CT); however, the latter remains essential because of its high specificity, good performance in estimating liver volumes and better vessel visibility. To characterize liver lesions using both the above image modalities, we propose a multimodal nonrigid registration framework using organ-focused mutual information (OF-MI). This proposal tries to improve mutual information (MI) based registration by adding spatial information, benefiting from the availability of expert liver segmentation in clinical protocols. The incorporation of an additional information channel containing liver segmentation information was studied. A dataset of real clinical images and simulated images was used in the validation process. A Gd–EOB–DTPA-enhanced MRI simulation framework is presented. To evaluate results, warping index errors were calculated for the simulated data, and landmark-based and surface-based errors were calculated for the real data. An improvement of the registration accuracy for OF-MI as compared with MI was found for both simulated and real datasets. Statistical significance of the difference was tested and confirmed in the simulated dataset (p < 0.01).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last few decades, new imaging techniques like X-ray computed tomography have made available rich and detailed information of the spatial arrangement of soil constituents, usually referred to as soil structure. Mathematical morphology provides a plethora of mathematical techniques to analyze and parameterize the geometry of soil structure. They provide a guide to design the process from image analysis to the generation of synthetic models of soil structure in order to investigate key features of flow and transport phenomena in soil. In this work, we explore the ability of morphological functions built over Minkowski functionals with parallel sets of the pore space to characterize and quantify pore space geometry of columns of intact soil. These morphological functions seem to discriminate the effects on soil pore space geometry of contrasting management practices in a Mediterranean vineyard, and they provide the first step toward identifying the statistical significance of the observed differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in non-destructive imaging techniques, such as X-ray computed tomography (CT), make it possible to analyse pore space features from the direct visualisation from soil structures. A quantitative characterisation of the three-dimensional solid-pore architecture is important to understand soil mechanics, as they relate to the control of biological, chemical, and physical processes across scales. This analysis technique therefore offers an opportunity to better interpret soil strata, as new and relevant information can be obtained. In this work, we propose an approach to automatically identify the pore structure of a set of 200-2D images that represent slices of an original 3D CT image of a soil sample, which can be accomplished through non-linear enhancement of the pixel grey levels and an image segmentation based on a PFCM (Possibilistic Fuzzy C-Means) algorithm. Once the solids and pore spaces have been identified, the set of 200-2D images is then used to reconstruct an approximation of the soil sample by projecting only the pore spaces. This reconstruction shows the structure of the soil and its pores, which become more bounded, less bounded, or unbounded with changes in depth. If the soil sample image quality is sufficiently favourable in terms of contrast, noise and sharpness, the pore identification is less complicated, and the PFCM clustering algorithm can be used without additional processing; otherwise, images require pre-processing before using this algorithm. Promising results were obtained with four soil samples, the first of which was used to show the algorithm validity and the additional three were used to demonstrate the robustness of our proposal. The methodology we present here can better detect the solid soil and pore spaces on CT images, enabling the generation of better 2D?3D representations of pore structures from segmented 2D images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tomografía axial computerizada (TAC) es la modalidad de imagen médica preferente para el estudio de enfermedades pulmonares y el análisis de su vasculatura. La segmentación general de vasos en pulmón ha sido abordada en profundidad a lo largo de los últimos años por la comunidad científica que trabaja en el campo de procesamiento de imagen; sin embargo, la diferenciación entre irrigaciones arterial y venosa es aún un problema abierto. De hecho, la separación automática de arterias y venas está considerado como uno de los grandes retos futuros del procesamiento de imágenes biomédicas. La segmentación arteria-vena (AV) permitiría el estudio de ambas irrigaciones por separado, lo cual tendría importantes consecuencias en diferentes escenarios médicos y múltiples enfermedades pulmonares o estados patológicos. Características como la densidad, geometría, topología y tamaño de los vasos sanguíneos podrían ser analizados en enfermedades que conllevan remodelación de la vasculatura pulmonar, haciendo incluso posible el descubrimiento de nuevos biomarcadores específicos que aún hoy en dípermanecen ocultos. Esta diferenciación entre arterias y venas también podría ayudar a la mejora y el desarrollo de métodos de procesamiento de las distintas estructuras pulmonares. Sin embargo, el estudio del efecto de las enfermedades en los árboles arterial y venoso ha sido inviable hasta ahora a pesar de su indudable utilidad. La extrema complejidad de los árboles vasculares del pulmón hace inabordable una separación manual de ambas estructuras en un tiempo realista, fomentando aún más la necesidad de diseñar herramientas automáticas o semiautomáticas para tal objetivo. Pero la ausencia de casos correctamente segmentados y etiquetados conlleva múltiples limitaciones en el desarrollo de sistemas de separación AV, en los cuales son necesarias imágenes de referencia tanto para entrenar como para validar los algoritmos. Por ello, el diseño de imágenes sintéticas de TAC pulmonar podría superar estas dificultades ofreciendo la posibilidad de acceso a una base de datos de casos pseudoreales bajo un entorno restringido y controlado donde cada parte de la imagen (incluyendo arterias y venas) está unívocamente diferenciada. En esta Tesis Doctoral abordamos ambos problemas, los cuales están fuertemente interrelacionados. Primero se describe el diseño de una estrategia para generar, automáticamente, fantomas computacionales de TAC de pulmón en humanos. Partiendo de conocimientos a priori, tanto biológicos como de características de imagen de CT, acerca de la topología y relación entre las distintas estructuras pulmonares, el sistema desarrollado es capaz de generar vías aéreas, arterias y venas pulmonares sintéticas usando métodos de crecimiento iterativo, que posteriormente se unen para formar un pulmón simulado con características realistas. Estos casos sintéticos, junto a imágenes reales de TAC sin contraste, han sido usados en el desarrollo de un método completamente automático de segmentación/separación AV. La estrategia comprende una primera extracción genérica de vasos pulmonares usando partículas espacio-escala, y una posterior clasificación AV de tales partículas mediante el uso de Graph-Cuts (GC) basados en la similitud con arteria o vena (obtenida con algoritmos de aprendizaje automático) y la inclusión de información de conectividad entre partículas. La validación de los fantomas pulmonares se ha llevado a cabo mediante inspección visual y medidas cuantitativas relacionadas con las distribuciones de intensidad, dispersión de estructuras y relación entre arterias y vías aéreas, los cuales muestran una buena correspondencia entre los pulmones reales y los generados sintéticamente. La evaluación del algoritmo de segmentación AV está basada en distintas estrategias de comprobación de la exactitud en la clasificación de vasos, las cuales revelan una adecuada diferenciación entre arterias y venas tanto en los casos reales como en los sintéticos, abriendo así un amplio abanico de posibilidades en el estudio clínico de enfermedades cardiopulmonares y en el desarrollo de metodologías y nuevos algoritmos para el análisis de imágenes pulmonares. ABSTRACT Computed tomography (CT) is the reference image modality for the study of lung diseases and pulmonary vasculature. Lung vessel segmentation has been widely explored by the biomedical image processing community, however, differentiation of arterial from venous irrigations is still an open problem. Indeed, automatic separation of arterial and venous trees has been considered during last years as one of the main future challenges in the field. Artery-Vein (AV) segmentation would be useful in different medical scenarios and multiple pulmonary diseases or pathological states, allowing the study of arterial and venous irrigations separately. Features such as density, geometry, topology and size of vessels could be analyzed in diseases that imply vasculature remodeling, making even possible the discovery of new specific biomarkers that remain hidden nowadays. Differentiation between arteries and veins could also enhance or improve methods processing pulmonary structures. Nevertheless, AV segmentation has been unfeasible until now in clinical routine despite its objective usefulness. The huge complexity of pulmonary vascular trees makes a manual segmentation of both structures unfeasible in realistic time, encouraging the design of automatic or semiautomatic tools to perform the task. However, this lack of proper labeled cases seriously limits in the development of AV segmentation systems, where reference standards are necessary in both algorithm training and validation stages. For that reason, the design of synthetic CT images of the lung could overcome these difficulties by providing a database of pseudorealistic cases in a constrained and controlled scenario where each part of the image (including arteries and veins) is differentiated unequivocally. In this Ph.D. Thesis we address both interrelated problems. First, the design of a complete framework to automatically generate computational CT phantoms of the human lung is described. Starting from biological and imagebased knowledge about the topology and relationships between structures, the system is able to generate synthetic pulmonary arteries, veins, and airways using iterative growth methods that can be merged into a final simulated lung with realistic features. These synthetic cases, together with labeled real CT datasets, have been used as reference for the development of a fully automatic pulmonary AV segmentation/separation method. The approach comprises a vessel extraction stage using scale-space particles and their posterior artery-vein classification using Graph-Cuts (GC) based on arterial/venous similarity scores obtained with a Machine Learning (ML) pre-classification step and particle connectivity information. Validation of pulmonary phantoms from visual examination and quantitative measurements of intensity distributions, dispersion of structures and relationships between pulmonary air and blood flow systems, show good correspondence between real and synthetic lungs. The evaluation of the Artery-Vein (AV) segmentation algorithm, based on different strategies to assess the accuracy of vessel particles classification, reveal accurate differentiation between arteries and vein in both real and synthetic cases that open a huge range of possibilities in the clinical study of cardiopulmonary diseases and the development of methodological approaches for the analysis of pulmonary images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O biótipo gengival, definido como a espessura da gengiva no sentido vestíbulo-lingual, desempenha importante papel na homeostasia dos tecidos periodontais, podendo ser considerado um preditor no sucesso em longo prazo das terapias periodontais e periimplantares. Assim sendo, é de suma importância reconhecer as dimensões do tecido gengival e as diferentes formas de qualificá-lo e principalmente quantificá-lo. Apesar de haver descrito na literatura inúmeros métodos para este fim, existem poucos estudos comparando a efetividade de um método em relação a outro. Desta maneira, este estudo buscou avaliar se há concordância entre avaliações clínicas e tomográficas na classificação do biótipo gengival, se existe correlação entre o biótipo gengival e a espessura óssea subjacente, além de descrever um novo método de tomada tomográfica que permita a análise quantitativa do biótipo gengival. Foram avaliados 12 indivíduos os quais realizaram tomografias computadorizadas de feixe cônico como exame imaginológico de diagnóstico ou planejamento pré-cirúrgico. Em cada paciente foram realizados quatro diferentes métodos de avaliação qualitativa da espessura gengival (transparência a sondagem, transgengival, visual através de fotografia e tomográfico), dois métodos de avaliação quantitativa (transgengival e tomográfico) da espessura gengival e avaliação da espessura óssea através da tomografia computadorizada de feixe cônico. Os resultados foram avaliados estatisticamente através do teste KAPPA, Teste t pareado e coeficiente de correlação de Pearson (pM0.05). O novo método de tomada tomográfica descrito neste estudo é eficaz para avaliação do biótipo gengival, havendo grande concordância (86,1% Kappa 0,51) e forte correlação (r=0,824) entre ele e o método transgengival (padrão ouro). A correlação entre a espessura óssea e a espessura gengival foi moderada quando utilizado o método transgengival e tomográfico (r=0,567 e r=0,653 respectivamente).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A presença da Medicina Nuclear como modalidade de obtenção de imagens médicas é um dos principais procedimentos utilizados hoje nos centros de saúde, tendo como grande vantagem a capacidade de analisar o comportamento metabólico do paciente, traduzindo-se em diagnósticos precoces. Entretanto, sabe-se que a quantificação em Medicina Nuclear é dificultada por diversos fatores, entre os quais estão a correção de atenuação, espalhamento, algoritmos de reconstrução e modelos assumidos. Neste contexto, o principal objetivo deste projeto foi melhorar a acurácia e a precisão na análise de imagens de PET/CT via processos realísticos e bem controlados. Para esse fim, foi proposta a elaboração de uma estrutura modular, a qual está composta por um conjunto de passos consecutivamente interligados começando com a simulação de phantoms antropomórficos 3D para posteriormente gerar as projeções realísticas PET/CT usando a plataforma GATE (com simulação de Monte Carlo), em seguida é aplicada uma etapa de reconstrução de imagens 3D, na sequência as imagens são filtradas (por meio do filtro de Anscombe/Wiener para a redução de ruído Poisson caraterístico deste tipo de imagens) e, segmentadas (baseados na teoria Fuzzy Connectedness). Uma vez definida a região de interesse (ROI) foram produzidas as Curvas de Atividade de Entrada e Resultante requeridas no processo de análise da dinâmica de compartimentos com o qual foi obtida a quantificação do metabolismo do órgão ou estrutura de estudo. Finalmente, de uma maneira semelhante imagens PET/CT reais fornecidas pelo Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP) foram analisadas. Portanto, concluiu-se que a etapa de filtragem tridimensional usando o filtro Anscombe/Wiener foi relevante e de alto impacto no processo de quantificação metabólica e em outras etapas importantes do projeto em geral.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O sistema microPET/CT é um importante equipamento utilizado nas pesquisas de imagem diagnóstica em pequenos animais. O radiofármaco mais usado nesta tecnologia é o fluordeoxiglicose marcado com flúor-18. Este estudo tem como objetivo efetuar o controle radiológico no laboratório de pesquisa microPET/CT do Centro de Radiofarmácia do IPEN-CNEN/SP, de forma a satisfazer tanto as normas nacionais como as recomendações internacionais. O laboratório está classificado pela equipe de radioproteção da instalação como área supervisionada, nas quais embora não seja obrigatória a adoção de medidas específicas de proteção e segurança, devem ser submetidas reavaliações regulares das condições do ambiente de trabalho. Visando assegurar a proteção radiológica dos trabalhadores diretamente envolvidos no manuseio do equipamento, realizou-se o monitoramento do local de trabalho e a avaliação do controle de dose individual. Inicialmente foi feito o monitoramento pré-operacional, isto é, o levantamento radiométrico no laboratório. Além disso, mediu-se nível de radiação externa nas instalações do laboratório e suas adjacências, por meio da colocação de nove dosímetros termoluminescentes (TL) de CaSO4:Dy, em locais previamente selecionados. Os indivíduos ocupacionalmente expostos foram avaliados mensalmente por meio do uso de dosímetros TL posicionados no tórax e por medidas de corpo inteiro, tomadas a cada seis meses. O período do estudo foi de dois anos, com início em abril de 2014. Para o controle do microPET/CT realizou-se testes de desempenho de acordo com o protocolo padrão do equipamento e em conformidade com a norma desenvolvida pela força tarefa para estudos com PET em animais Animal PET Standard Task Force. O presente estudo permitiu demonstrar que os níveis de radiação das áreas (estimativas de dose ambiente e dose efetiva), assim como a blindagem do equipamento estão adequados de acordo com os limites da exposição ocupacional. Ressalta-se a importância de se seguir rigorosamente os princípios de radioproteção, já que se trata de pesquisas com fontes radioativas não seladas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the construction of anatomically realistic three-dimensional in-silico breast phantoms with adjustable sizes, shapes and morphologic features. The concept of multiscale spatial resolution is implemented for generating breast tissue images from multiple modalities. Breast epidermal boundary and subcutaneous fat layer is generated by fitting an ellipsoid and 2nd degree polynomials to reconstructive surgical data and ultrasound imaging data. Intraglandular fat is simulated by randomly distributing and orienting adipose ellipsoids within a fibrous region immediately within the dermal layer. Cooper’s ligaments are simulated as fibrous ellipsoidal shells distributed within the subcutaneous fat layer. Individual ductal lobes are simulated following a random binary tree model which is generated based upon probabilistic branching conditions described by ramification matrices, as originally proposed by Bakic et al [3, 4]. The complete ductal structure of the breast is simulated from multiple lobes that extend from the base of the nipple and branch towards the chest wall. As lobe branching progresses, branches are reduced in height and radius and terminal branches are capped with spherical lobular clusters. Biophysical parameters are mapped onto the complete anatomical model and synthetic multimodal images (Mammography, Ultrasound, CT) are generated for phantoms of different adipose percentages (40%, 50%, 60%, and 70%) and are analytically compared with clinical examples. Results demonstrate that the in-silico breast phantom has applications in imaging performance evaluation and, specifically, great utility for solving image registration issues in multimodality imaging.