912 resultados para metal-ion detection


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cupin superfamily of proteins is among the most functionally diverse of any described to date. It was named on the basis of the conserved beta-barrel fold ('cupa' is the Latin term for a small barrel), and comprises both enzymatic and non-enzymatic members, which have either one or two cupin domains. Within the conserved tertiary structure, the variety of biochemical function is provided by minor variation of the residues in the active site and the identity of the bound metal ion. This review discusses the advantages of this particular scaffold and provides an evolutionary analysis of 18 different subclasses within the cupin superfamily.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Severe acute respiratory syndrome (SARS) coronavirus infection and growth are dependent on initiating signaling and enzyme actions upon viral entry into the host cell. Proteins packaged during virus assembly may subsequently form the first line of attack and host manipulation upon infection. A complete characterization of virion components is therefore important to understanding the dynamics of early stages of infection. Mass spectrometry and kinase profiling techniques identified nearly 200 incorporated host and viral proteins. We used published interaction data to identify hubs of connectivity with potential significance for virion formation. Surprisingly, the hub with the most potential connections was not the viral M protein but the nonstructurall protein 3 (nsp3), which is one of the novel virion components identified by mass spectrometry. Based on new experimental data and a bioinformatics analysis across the Coronaviridae, we propose a higher-resolution functional domain architecture for nsp3 that determines the interaction capacity of this protein. Using recombinant protein domains expressed in Escherichia coli, we identified two additional RNA-binding domains of nsp3. One of these domains is located within the previously described SARS-unique domain, and there is a nucleic acid chaperone-like domain located immediately downstream of the papain-like proteinase domain. We also identified a novel cysteine-coordinated metal ion-binding domain. Analyses of interdomain interactions and provisional functional annotation of the remaining, so-far-uncharacterized domains are presented. Overall, the ensemble of data surveyed here paint a more complete picture of nsp3 as a conserved component of the viral protein processing machinery, which is intimately associated with viral RNA in its role as a virion component.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phytase (myo-inositol-1,2,3,4,5,6-hexakisphosphate phosphohydrolase, EC 3.1.3.26), which catalyses the step-wise hydrolysis of phytic acid, was purified from cotyledons of dormant Corylus avellana L. seeds. The enzyme was separated from the major soluble acid phosphatase by successive (NH4)2SO4 precipitation, gel filtration and cation exchange chromatography resulting in a 300-fold purification and yield of 7.5%. The native enzyme positively interacted with Concanavalin A suggesting that it is putatively glycosylated. After size exclusion chromatography and SDS–PAGE it was found to be a monomeric protein with molecular mass 72±2.5 kDa. The hazel enzyme exhibited optimum activity for phytic acid hydrolysis at pH 5 and, like other phytases, had broad substrate specificity. It exhibited the lowest Km (162 μM) and highest specificity constant (Vmax/Km) for phytic acid, indicating that this is the preferred in vivo substrate. It required no metal ion as a co-factor, while inorganic phosphate and fluoride competitively inhibited enzymic activity (Ki=407 μM and Ki=205 μM, respectively).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Kinetic studies on the AR (aldose reductase) protein have shown that it does not behave as a classical enzyme in relation to ring aldose sugars. As with non-enzymatic glycation reactions, there is probably a free radical element involved derived from monosaccharide autoxidation. in the case of AR, there is free radical oxidation of NADPH by autoxidizing monosaccharides, which is enhanced in the presence of the NADPH-binding protein. Thus any assay for AR based on the oxidation of NADPH in the presence of autoxidizing monosaccharides is invalid, and tissue AR measurements based on this method are also invalid, and should be reassessed. AR exhibits broad specificity for both hydrophilic and hydrophobic aldehydes that suggests that the protein may be involved in detoxification. The last thing we would want to do is to inhibit it. ARIs (AR inhibitors) have a number of actions in the cell which are not specific, and which do not involve them binding to AR. These include peroxy-radical scavenging and effects of metal ion chelation. The AR/ARI story emphasizes the importance of correct experimental design in all biocatalytic experiments. Developing the use of Bayesian utility functions, we have used a systematic method to identify the optimum experimental designs for a number of kinetic model data sets. This has led to the identification of trends between kinetic model types, sets of design rules and the key conclusion that such designs should be based on some prior knowledge of K-m and/or the kinetic model. We suggest an optimal and iterative method for selecting features of the design such as the substrate range, number of measurements and choice of intermediate points. The final design collects data suitable for accurate modelling and analysis and minimizes the error in the parameters estimated, and is suitable for simple or complex steady-state models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One 3D and one 2D mu(1,5)-dicyanamide bridged Ni-II complexes having molecular formula [Ni(L1)(dca)(2)] (1) and [Ni-2(L-2)(2)(dca)(4)] (.) 0.5H(2)O (2) (L1 = 4-(2-aminoethyl)-morpholine, L2 = 1-(2-aminoethyl)-piperidine and dca = dicyanamide dianion) have been synthesized. X-ray single crystal analyses and low temperature magnetic measurements were used to characterize the complexes. Complex 1 represents a 3D structure where each metal ion is chelated by morpholine ligand (L1) and connected by four mu(1,5)-dca. Whereas complex 2 shows an undulated 2D structure with grid of (4,4) topology having two crystallographically independent Ni-II centers in similar octahedral environment where each metal center is chelated by one piperidine ligand (L2) and coordinated by four mu(1,5)-dca. Magnetic measurements of both the complexes indicate weak antiferromagnetic interactions through the mu-(1,5)-dca bridging ligands. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hydrothermal reactions of Ni(NO3)(2).6H(2)O, disodium fumarate (fum) and 1,2-bis(4-pyridyl)ethane (bpe)/1,3-bis(4-pyridyl) propane (bpp) in aqueous-methanol medium yield one 3-D and one 2-D metal-organic hybrid material, [Ni(fum)(bpe)] (1) and [Ni(fum)(bpp)(H2O)] (2), respectively. Complex 1 possesses a novel unprecedented structure, the first example of an "unusual mode" of a five-fold distorted interpenetrated network with metal-ligand linkages where the four six-membered windows in each adamantane-type cage are different. The structural characterization of complex 2 evidences a buckled sheet where nickel ions are in a distorted octahedral geometry, with two carboxylic groups, one acting as a bis-chelate, the other as a bis-monodentate ligand. The metal ion completes the coordination sphere through one water molecule and two bpp nitrogens in cis position. Variable-temperature magnetic measurements of complexes 1 and 2 reveal the existence of very weak antiferromagnetic intramolecular interactions and/or the presence of single-ion zero field splitting (D) of isolated Ni-II ions in both the compounds. Experimentally, both the J parameters are close, comparable and very small. Considering zero-field splitting of Ni-II, the calculated D values are in agreement with values reported in the literature for Ni-II ions. Complex 3, [{Co(phen)}(2)(fum)(2)] (phen=1,10-phenanthroline) is obtained by diffusing methanolic solution of 1,10-phenanthroline on an aqueous layer of disodium fumarate and Co(NO3)(2).6H(2)O. It consists of dimeric Co-II(phen) units, doubly bridged by carboxylate groups in a distorted syn-syn fashion. These fumarate anions act as bis-chelates to form corrugated sheets. The 2D layer has a (4,4) topology, with the nodes represented by the centres of the dimers. The magnetic data were fitted ignoring the very weak coupling through the fumarate pathway and using a dimer model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three mu(1.5)-dicyanamide bridged Mn(II) and Co(II) complexes having molecular formula [Mn(dca)(2)(H2O)(2)](n)center dot(hmt)(n) (1), [Co(dca)(2) (H2O)(2)](n)center dot(hmt)(n) (2) and [Co(dca)(2)(bpds)](n) (3) [dca = dicyanamide; hmt = hexamethylenetetramine; bpds = 4,4'-bipyridyl disulfide] have been synthesized and characterized by single crystal X-ray diffraction study, low temperature (300-2 K) magnetic measurement and thermal behavior. The X-ray diffraction analysis of 1 and 2 reveals that they are isostructural, comprising of 1D coordination polymers [M(dca)(2)(H2O)(2)](n) [M = Mn(II), Co(II) for 1 and 2. respectively] with uncoordinated hmt molecules located among the chains. The [M(dca)(2)(H2O)(2)](n) chains and the lattice hint molecules are connected through H-bonds resulting in a 3D supramolecular architecture. The octahedral N4O2 chromophore surrounding the metal ion forms via two trans located water oxygens and four nitrogens from four nitrile dca. Complex 3 is a 1D chain formed by two mu(1.5)-dca and one bridging bpds. The octahedral N-6 coordination sphere surrounding the cobalt ions comprises four nitrogens from dca and two from bpds. Low temperature magnetic study indicates small antiferromagnetic coupling for all the complexes. Best fit parameters for 1: J = -0.17 cm(-1), g = -2.03 with R = 6.1 x 10(-4), for 2, J = -0.50 cm(-1), and for 3, J = -0.95 cm(-1). (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three new mononuclear complexes of nitrogen-sulfur donor sets, formulated as (Fe-II(L)Cl-2] (1), [Co-II(L)Cl-2] (2) and [Ni-II(L)Cl-2] (3) where L = 1,3-bis(2-pyridylmethylthio)propane, were synthesized and isolated in their pure form. All the complexes were characterized by physicochemical and spectroscopic methods. The solid state structures of complexes I and 3 have been established by single crystal X-ray crystallography. The structural analysis evidences isomorphous crystals with the metal ion in a distorted octahedral geometry that comprises NSSN ligand donors with trans located pyridine rings and chlorides in cis positions. In dimethylformamide solution, the complexes were found to exhibit Fe-II/Fe-III, co(II)/co(III) and Ni-II/Ni-III quasi-reversible redox couples in cyclic voltammograms with E-1/2 values (versus Ag/AgCl at 298 K) of +0.295, +0.795 and +0.745 V for 1, 2 and 3, respectively. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two new hexa-coordinated mononuclear copper(II) complexes of two ligands L-1 and L-2 containing NSSN donor sets formulated as [Cu(L)(H2O)(2)](NO3)(2) [1a, L = 1,2-bis(2-pyridylmethylthio)ethane (L-1), 1b L = 1,3-bis(2-pyridyl-methylthio)propane (L-2)] were synthesized and characterized by physico-chemical and spectroscopic methods. In 1a the single crystal X-ray crystallography analysis showed a distorted octahedral geometry about copper(II) ion. The crystal packing evidences pairs of complexes arranged about a center of symmetry and connected through a H-bond occurring between aquo ligands and nitrate anions. On reaction with chloride and pseudohalides (N-3(-) and SCN-), in acetonitrile at ambient temperature. complexes 1 changed to monocationic penta-coordinated mononuclear copper(H) species formulated as [Cu(L)(Cl)]NO3 (2), [Cu(L)(N-3)]NO3 (3). and [Cu(L)(SCN)]NO3 (4). These copper(II) complexes have been isolated in pure form from the reaction mixtures and characterized by physico-chemical and spectroscopic tools. The solid-state structure of 2a, established by X-ray crystallography, shows a trigonal bipyramidal geometry about the metal ion with a trigonality index (tau) of 0.561. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using the 1:2 condensate (L) of diethylenetriamine and benzaldehyde as the main ligand, binuclear copper(l) complexes [Cu2L2(4,4'-bipyridine)](CIO4)(2).0.5H(2)O (1a) and [Cu2L2(1,2-bis(4-pyridyl)ethane)](CIO4)(2) (1b) are synthesised. The two metal ions in la are bridged by 4,4'-bipyridine and those in 1b by 1,2-bis(4-pyridyl)ethane, From the X-ray crystal structure of la, each metal ion is found to be bound to three N atoms of L and one of the two N atoms of the bridging ligand in a distorted tetrahedral fashion. The Cu(I)-N bond lengths in la lie in the range of 1.998(5)-2.229(6) Angstrom. Electrochemical studies in dichloromethane (DCM) show that the (Cu2N8)-N-I moieties in la and 1b are composed of two essentially non-interacting (CuN4)-N-I cores with Cu-II/I potential of 0.44 V vs. SCE. While la displays metal induced quenching of the inherent emission of 4,4'-bipyridine in DCM solution, 1b exhibits two weak emission bands in DCM solution at 425 and 477 nm (total quantum yield = 3.59 x 10(-5)) originating from MLCT excited states. With the help of Extended Huckel calculations it is established that the higher energy emission in 1b is from Cu(I) --> bridging-ligand charge transfer excited state and the lower energy one in 1b from Cu(I) --> L charge transfer excited state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of cancer in humans and animals is a multistep process. The complex series of cellular and molecular changes participating in cancer development are mediated by a diversity of endogenous and exogenous stimuli. One type of endogenous damage is that arising from intermediates of oxygen (dioxygen) reduction - oxygen-free radicals (OFR), which attacks not only the bases but also the deoxyribosyl backbone of DNA. Thanks to improvements in analytical techniques, a major achievement in the understanding of carcinogenesis in the past two decades has been the identification and quantification of various adducts of OFR with DNA. OFR are also known to attack other cellular components such as lipids, leaving behind reactive species that in turn can couple to DNA bases. Endogenous DNA lesions are genotoxic and induce mutations. The most extensively studied lesion is the formation of 8-OH-dG. This lesion is important because it is relatively easily formed and is mutagenic and therefore is a potential biomarker of carcinogenesis. Mutations that may arise from formation of 8-OH-dG involve GC. TA transversions. In view of these findings, OFR are considered as an important class of carcinogens. The effect of OFR is balanced by the antioxidant action of non-enzymatic antioxidants as well as antioxidant enzymes. Non-enzymatic antioxidants involve vitamin C, vitamin E, carotenoids (CAR), selenium and others. However, under certain conditions, some antioxidants can also exhibit a pro-oxidant mechanism of action. For example, beta-carotene at high concentration and with increased partial pressure of dioxygen is known to behave as a pro-oxidant. Some concerns have also been raised over the potentially deleterious transition metal ion-mediated (iron, copper) pro-oxidant effect of vitamin C. Clinical studies mapping the effect of preventive antioxidants have shown surprisingly little or no effect on cancer incidence. The epidemiological trials together with in vitro experiments suggest that the optimal approach is to reduce endogenous and exogenous sources of oxidative stress, rather than increase intake of anti-oxidants. In this review, we highlight some major achievements in the study of DNA damage caused by OFR and the role in carcinogenesis played by oxidatively damaged DNA. The protective effect of antioxidants against free radicals is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

coating composition comprising an oxidatively drying coating binder and a chelate comprising at least one group according to the following formula (I): forming a complex with a metal ion, A1 and A2 both being an aromatic residue, R1 and R3 being covalently bonded groups, and R2 being a divalent organic radical, wherein at least one solubilizing group is coivalently bonded to the chelating compound. The solubilizing group is a non-polar group, preferable an aliphatic group having at least four carbon atoms, covalently bonded to A1 and/or A2. The metal ion is a divalent ion of a metal selected from the group of manganese, cobalt, copper, lead, zirconium, iron, lanthanium, cerium, vanadium, and clacium or a trivalent ion of a metal selected from the group of manganese, cobalt, lead, zirconium, iron, lanthanium, cerium, and vanadium, combined with a monovalent counterion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dipeptide L-carnosine has a number of important biological properties. Here, we explore the effect of attachment of a bulky hydrophobic aromatic unit, Fmoc [N-(fluorenyl-9-methoxycarbonyl)] on the self-assembly of Fmoc-L-carnosine, i.e., Fmoc-Beta-alanine-histidine (Fmoc-BetaAH). It is shown that Fmoc-BetaAH forms well-defined amyloid fibril containing Beta sheets above a critical aggregation concentration, which is determined from pyrene and ThT fluorescence experiments. Twisted fibrils were imaged by cryogenic transmission electron microscopy. The zinc-binding properties of Fmoc-BetaAH were investigated by FTIR and Raman spectroscopy since the formation of metal ion complexes with the histidine residue in carnosine is well-known, and important to its biological roles. Observed changes in the spectra may reflect differences in the packing of the Fmoc-dipeptides due to electrostatic interactions. Cryo-TEM shows that this leads to changes in the fibril morphology. Hydrogelation is also induced by addition of an appropriate concentration of zinc ions. Our work shows that the Fmoc motif can be employed to drive the self-assembly of carnosine into amyloid fibrils.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The synthesis, lanthanide complexation, and solvent ex- traction of actinide(III) and lanthanide(III) radiotracers from nitric acid solutions by a phenanthroline-derived quadridentate bis-triazine ligand are described. The ligand separates Am(III) and Cm(III) from the lanthanides with remarkably high efficiency, high selectivity, and fast extraction kinetics compared to its 2,2'-bipyridine counterpart. Structures of the 1:2 bis-complexes of the ligand with Eu(III) and Yb(III) were elucidated by X-ray crystallography and force field calculations, respec-tively. The Eu(III) bis-complex is the first 1:2 bis-complex of a quadridentate bis-triazine ligand to be characterized by crystallography. The faster rates of extraction were verified by kinetics measurements using the rotating membrane cell technique in several diluents. The improved kinetics of metal ion extraction are related to the higher surface activity of the ligand at the phase interface. The improvement in the ligand's properties on replacing the bipyridine unit with a phenanthroline unit far exceeds what was anticipated based on ligand design alone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four new 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) ligands, which contain either additional alkyl groups on the pyridine rings or seven-membered aliphatic rings attached to the triazine rings, have been synthesized, and the effects of the additional alkyl substitution in the 4- and 4′-positions of the pyridine rings on their extraction properties with LnIII and AnIII cations in simulated nuclear waste solutions have been studied. The speciation of ligand 13 with some trivalent lanthanide nitrates was elucidated by 1H NMR spectroscopic titrations and ESI-MS. Although 13 formed both 1:1 and 1:2 complexes with LaIII and YIII, only 1:2 complexes were observed with EuIII and CeIII. Quite unexpectedly, both alkyl-substituted ligands 12 and 13 showed lower solubilities in certain diluents than the unsubstituted ligand CyMe4-BTBP. Compared to CyMe4-BTBP, alkyl-substitution was found to decrease the rates of metal-ion extraction of the ligands in both 1-octanol and cyclohexanone. A highly efficient (DAm > 10) and selective (SFAm/Eu > 90) extraction was observed for 12 and 13 in cyclohexanone and for 13 in 1-octanol in the presence of a phase-transfer agent. The implications of these results for the design of improved extractants for radioactive waste treatment are discussed.