753 resultados para mechanical damages


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viruses are known to tolerate wide ranges of pH and salt conditions and to withstand internal pressures as high as 100 atmospheres. In this paper we investigate the mechanical properties of viral capsids, calling explicit attention to the inhomogeneity of the shells that is inherent to their discrete and polyhedral nature. We calculate the distribution of stress in these capsids and analyze their response to isotropic internal pressure (arising, for instance, from genome confinement and/or osmotic activity). We compare our results with appropriate generalizations of classical (i.e., continuum) elasticity theory. We also examine competing mechanisms for viral shell failure, e.g., in-plane crack formation vs radial bursting. The biological consequences of the special stabilities and stress distributions of viral capsids are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the visual and chemical quality of tangerines after mechanical damage by impacts. The tangerine cultivars Montenegrina and Rainha were submitted to different degrees of impact and evaluated for decay and oleocellosis, loss of fresh weight, total soluble solids, total titratable acidity and ascorbic acid degradation, as well as for epicarp color changes. Experiments with three replicates and experimental units of six fruit for each cultivar were done in a completely randomized design. Impact produced qualitative internal and minor external changes on tangerines. The main modifications produced by impact on the fruit were losses of citric acid and soluble solids, which increased the solid:acid ratio, and losses of ascorbic acid. 'Montenegrina' tangerines are more susceptible to internal quality damage than 'Rainha'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iowa Plumber, Mechanical Professional, and Contractor Licensing Board (PMB) submits the following annual budget report to the Iowa State Legislature. Iowa Code 105.9 requires the board to demonstrate that revenues remain within 10% of expenditures over a period of at least three years

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iowa Plumber, Mechanical Professional, and Contractor Licensing Board (PMB) submits the following annual budget report to the Iowa State Legislature. Iowa Code 105.9 requires the board to demonstrate that revenues remain within 10% of expenditures over a period of at least three years

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background : Epidermolytic hyperkeratosis (bullous congenital ichthyosiform erythroderma), characterized by ichthyotic, rippled hyperkeratosis, erythroderma and skin blistering, is a rare autosomal dominant disease caused by mutations in keratin 1 or keratin 10 (K10) genes. A severe phenotype is caused by a missense mutation in a highly conserved arginine residue at position 156 (R156) in K10. Objectives: To analyse molecular pathomechanisms of hyperproliferation and hyperkeratosis, we investigated the defects in mechanosensation and mechanotransduction in keratinocytes carrying the K10R156H mutation. Methods: Differentiated primary human keratinocytes infected with lentiviral vectors carrying wild-type K10 (K10wt) or mutated K10R156H were subjected to 20% isoaxial stretch. Cellular fragility and mechanosensation were studied by analysis of mitogen-activated protein kinase activation and cytokine release. Results: Cultured keratinocytes expressing K10R156H showed keratin aggregate formation at the cell periphery, whereas the filament network in K10wt cells was normal. Under stretching conditions K10R156H keratinocytes exhibited about a twofold higher level of filament collapse compared with steady state. In stretched K10R156H cells, higher p38 activation, higher release of tumour necrosis factor-alpha and RANTES but reduced interleukin-1 beta secretion compared with K10wt cells was observed. Conclusions: These results demonstrate that the R156H mutation in K10 destabilizes the keratin intermediate filament network and affects stress signalling and inflammatory responses to mechanical stretch in differentiated cultured keratinocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumant mon travail de thèse, l'article qui suit décrit un nouveau modèle animal servant à étudier l'impact combiné d'une ventilation mécanique (VM), d'une oxygénothérapie et d'une inflammation sur des poumons immatures. Cette étude permet, pour la première fois, de mesurer l'expression de gènes à distance d'une VM pour en analyser la cinétique. La VM représente un traitement intégral dans la prise en charge de prématurés. Sauvant des vies, elle est cependant non-physiologique et décrite comme nocive à court et à long terme, empêchant le bon développement pulmonaire. Nombreuses études se sont intéressées à l'impact immédiat de la VM sur les poumons, mais il n'existe à ce jour aucun modèle de rongeur pour en analyser les effets tardifs. Par analogie avec la clinique, nous avons créé un modèle avec un animal dont le stade développemental pulmonaire est comparable aux prématurés humains et consistant en une oxygénothérapie, une VM modérée avec intubation non chirurgicale, similaire à la pratique quotidienne, et un contexte inflammatoire mimant celui de chorioamnionite dans lequel bien des prématurés naissent. Nous avons ensuite réalisé une extubation pour permettre une période de rétablissement, puis fait des analyses et sur le plan structurel par histologie conventionnelle et en 3D, et sur le plan biologique, par analyse de l'expression de gènes et de protéines. Ce travail a permis de valider ce nouveau modèle comme outil de recherche pour réaliser des mesures à distance d'une VM chez des rats nouveau-nés. Comparant ces mesures à celles prises à la fin de la VM, nous observons: une augmentation initiale et transitoire des médiateurs impliqués dans la cascade inflammatoire dont le corrélat histologique est une maladie inflammatoire pulmonaire et, tardivement, une altération plus développementale de la structure pulmonaire avec diminution de l'alvéolarisation. Ceci pourrait être en partie dû à une expression asynchrone de gènes décrits comme importants pour la formation des alvéoles (matrix metalloproteinase 9, elastine). Offrant une nouvelle approche pour la recherche pulmonaire chez les rongeurs, ce modèle servira comme futur outil pour approfondir nos connaissances de la physiopathologie conduisant aux altérations structurelles retrouvées dans les poumons d'anciens prématurés soumis à une VM (dysplasie broncho-pulmonaire), pour tester l'influence de certains traitements (p.ex. surfactant) et pour étudier les effets de la VM en l'appliquant à des modèles transgéniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tässä diplomityössä tutkittiin ja vertailtiin eukalyptuksen, akaasian ja koivun kemimekaanista kuiduttamista ja valkaisua. Yleensä näitä puulajeja käytetään sellun keittoon. Puulajit eroavat toisistaan kasvupaikan ja kuiturakenteen osalta. Eukalyptus ja akaasia ovat niin sanottuja trooppisia lehtipuita, kun taas koivu kasvaa pohjoisilla vyöhykkeillä. Koivulla on kookkaimmat kuidut ja akaasialla pienimmät kuidut. Myös näiden lajien putkilot eroavat toisistaan. Koivun putkilot ovat pitkiä ja kapeita, kun taas eukalyptuksen ja akaasian putkilot ovat lyhyitä ja leveitä. Prosessiksi valittiin kaksivaiheinen APMP-prosessi. Koeajot tehtiinKeskuslaboratorio Oy:ssä. Massoille asetettiin seuraavat tavoitteet: freeness 150-200 ml ja vaaleus 80 %ISO. Eukalyptukselle ja koivulle tehtiin kaksi erilaista impregnointisarjaa, mutta akaasialle vain yksi. Jauhatuksen viimeisessä vaiheessa kokeiltiin myös jauhinvalkaisua. Jauhatuksen energiankulutus oli korkea varsinkin eukalyptuksella ja akaasialla. Jotta energiankulutus saataisiin pienemmäksi, tulisi käyttää enemmän lipeää, mutta se johtaa alkalitummumiseen. Lopuksi massat valkaistiin laboratoriossa. Eukalyptus ja koivu pystyttiin valkaisemaan vaaleuteen 80 %ISO, mutta eukalyptuksen valkaisu vaati enemmän peroksidia kuin koivun valkaisu. Akaasian lähtövaaleus oli niin alhainen, ettei siinä päästy tavoitevaaleuteen. Eukalyptuksella on parempi valonsironta ja paremmat lujuusominaisuudet kuin koivulla. Kemimekaanista massaa voidaan käyttää hienopaperissa parantamassa jäykkyyttä, bulkkia ja valonsirontaa, mutta usein ongelmana on alhainen vaaleus ja huono vaaleuden pysyvyys. Kemimekaanista massaa voidaankäyttää missä tahansa mekaanisissa painopapereissa. Mekaanisissa painopapereissa kemimekaanisella lehtipuumassalla voidaan korvata mekaanista havupuumassaa. Akaasia on niin tummaa, ettei sitä voida käyttää korkeavaaleuksisiin papereihin. Eukalyptus ja koivu ovat vaaleampia ja helpompia valkaista kuin akaasia, mutta myös niillä on niin huono vaaleudenpysyvyys että käyttö hienopapereissa on rajoittunutta. Mekaanisille eukalyptus ja koivumassoille hienopaperia parempi käyttökohde on mekaaniset painopaperit, kuten MWC-paperi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins can switch between different conformations in response to stimuli, such as pH or temperature variations, or to the binding of ligands. Such plasticity and its kinetics can have a crucial functional role, and their characterization has taken center stage in protein research. As an example, Topoisomerases are particularly interesting enzymes capable of managing tangled and supercoiled double-stranded DNA, thus facilitating many physiological processes. In this work, we describe the use of a cantilever-based nanomotion sensor to characterize the dynamics of human topoisomerase II (Topo II) enzymes and their response to different kinds of ligands, such as ATP, which enhance the conformational dynamics. The sensitivity and time resolution of this sensor allow determining quantitatively the correlation between the ATP concentration and the rate of Topo II conformational changes. Furthermore, we show how to rationalize the experimental results in a comprehensive model that takes into account both the physics of the cantilever and the dynamics of the ATPase cycle of the enzyme, shedding light on the kinetics of the process. Finally, we study the effect of aclarubicin, an anticancer drug, demonstrating that it affects directly the Topo II molecule inhibiting its conformational changes. These results pave the way to a new way of studying the intrinsic dynamics of proteins and of protein complexes allowing new applications ranging from fundamental proteomics to drug discovery and development and possibly to clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis was to produce information for the estimation of the flow balance of wood resin in mechanical pulping and to demonstrate the possibilities for improving the efficiency of deresination in practice. It was observed that chemical changes in wood resin take place only during peroxide bleaching, a significant amount of water dispersed wood resin is retained in the pulp mat during dewatering and the amount of wood resin in the solid phase of the process filtrates is very small. On the basis of this information there exist three parameters related to behaviour of wood resin that determine the flow balance in the process: 1. The liberation of wood resin to the pulp water phase 2. Theretention of water dispersed wood resin in dewatering 3. The proportion of wood resin degraded in the peroxide bleaching The effect of different factors on these parameters was evaluated with the help of laboratory studies and a literature survey. Also, information related to the values of these parameters in existing processes was obtained in mill measurements. With the help of this information, it was possible to evaluate the deresination efficiency and the effect of different factors on this efficiency in a pulping plant that produced low-freeness mechanical pulp. This evaluation showed that the wood resin content of mechanical pulp can be significantly decreased if there exists, in the process, a peroxide bleaching and subsequent washing stage. In the case of an optimal process configuration, as high as a 85 percent deresination efficiency seems to be possible with a water usage level of 8 m3/o.d.t.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theultimate goal of any research in the mechanism/kinematic/design area may be called predictive design, ie the optimisation of mechanism proportions in the design stage without requiring extensive life and wear testing. This is an ambitious goal and can be realised through development and refinement of numerical (computational) technology in order to facilitate the design analysis and optimisation of complex mechanisms, mechanical components and systems. As a part of the systematic design methodology this thesis concentrates on kinematic synthesis (kinematic design and analysis) methods in the mechanism synthesis process. The main task of kinematic design is to find all possible solutions in the form of structural parameters to accomplish the desired requirements of motion. Main formulations of kinematic design can be broadly divided to exact synthesis and approximate synthesis formulations. The exact synthesis formulation is based in solving n linear or nonlinear equations in n variables and the solutions for the problem areget by adopting closed form classical or modern algebraic solution methods or using numerical solution methods based on the polynomial continuation or homotopy. The approximate synthesis formulations is based on minimising the approximation error by direct optimisation The main drawbacks of exact synthesis formulationare: (ia) limitations of number of design specifications and (iia) failure in handling design constraints- especially inequality constraints. The main drawbacks of approximate synthesis formulations are: (ib) it is difficult to choose a proper initial linkage and (iib) it is hard to find more than one solution. Recentformulations in solving the approximate synthesis problem adopts polynomial continuation providing several solutions, but it can not handle inequality const-raints. Based on the practical design needs the mixed exact-approximate position synthesis with two exact and an unlimited number of approximate positions has also been developed. The solutions space is presented as a ground pivot map but thepole between the exact positions cannot be selected as a ground pivot. In this thesis the exact synthesis problem of planar mechanism is solved by generating all possible solutions for the optimisation process ¿ including solutions in positive dimensional solution sets - within inequality constraints of structural parameters. Through the literature research it is first shown that the algebraic and numerical solution methods ¿ used in the research area of computational kinematics ¿ are capable of solving non-parametric algebraic systems of n equations inn variables and cannot handle the singularities associated with positive-dimensional solution sets. In this thesis the problem of positive-dimensional solutionsets is solved adopting the main principles from mathematical research area of algebraic geometry in solving parametric ( in the mathematical sense that all parameter values are considered ¿ including the degenerate cases ¿ for which the system is solvable ) algebraic systems of n equations and at least n+1 variables.Adopting the developed solution method in solving the dyadic equations in direct polynomial form in two- to three-precision-points it has been algebraically proved and numerically demonstrated that the map of the ground pivots is ambiguousand that the singularities associated with positive-dimensional solution sets can be solved. The positive-dimensional solution sets associated with the poles might contain physically meaningful solutions in the form of optimal defectfree mechanisms. Traditionally the mechanism optimisation of hydraulically driven boommechanisms is done at early state of the design process. This will result in optimal component design rather than optimal system level design. Modern mechanismoptimisation at system level demands integration of kinematic design methods with mechanical system simulation techniques. In this thesis a new kinematic design method for hydraulically driven boom mechanism is developed and integrated in mechanical system simulation techniques. The developed kinematic design method is based on the combinations of two-precision-point formulation and on optimisation ( with mathematical programming techniques or adopting optimisation methods based on probability and statistics ) of substructures using calculated criteria from the system level response of multidegree-of-freedom mechanisms. Eg. by adopting the mixed exact-approximate position synthesis in direct optimisation (using mathematical programming techniques) with two exact positions and an unlimitednumber of approximate positions the drawbacks of (ia)-(iib) has been cancelled.The design principles of the developed method are based on the design-tree -approach of the mechanical systems and the design method ¿ in principle ¿ is capable of capturing the interrelationship between kinematic and dynamic synthesis simultaneously when the developed kinematic design method is integrated with the mechanical system simulation techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The future of high technology welded constructions will be characterised by higher strength materials and improved weld quality with respect to fatigue resistance. The expected implementation of high quality high strength steel welds will require that more attention be given to the issues of crack initiation and mechanical mismatching. Experiments and finite element analyses were performed within the framework of continuum damage mechanics to investigate the effect of mismatching of welded joints on void nucleation and coalescence during monotonic loading. It was found that the damage of undermatched joints mainly occurred in the sandwich layer and the damageresistance of the joints decreases with the decrease of the sandwich layer width. The damage of over-matched joints mainly occurred in the base metal adjacent to the sandwich layer and the damage resistance of the joints increases with thedecrease of the sandwich layer width. The mechanisms of the initiation of the micro voids/cracks were found to be cracking of the inclusions or the embrittled second phase, and the debonding of the inclusions from the matrix. Experimental fatigue crack growth rate testing showed that the fatigue life of under-matched central crack panel specimens is longer than that of over-matched and even-matched specimens. Further investigation by the elastic-plastic finite element analysis indicated that fatigue crack closure, which originated from the inhomogeneousyielding adjacent to the crack tip, played an important role in the fatigue crack propagation. The applicability of the J integral concept to the mismatched specimens with crack extension under cyclic loading was assessed. The concept of fatigue class used by the International Institute of Welding was introduced in the parametric numerical analysis of several welded joints. The effect of weld geometry and load condition on fatigue strength of ferrite-pearlite steel joints was systematically evaluated based on linear elastic fracture mechanics. Joint types included lap joints, angle joints and butt joints. Various combinations of the tensile and bending loads were considered during the evaluation with the emphasis focused on the existence of both root and toe cracks. For a lap joint with asmall lack-of-penetration, a reasonably large weld leg and smaller flank angle were recommended for engineering practice in order to achieve higher fatigue strength. It was found that the fatigue strength of the angle joint depended strongly on the location and orientation of the preexisting crack-like welding defects, even if the joint was welded with full penetration. It is commonly believed that the double sided butt welds can have significantly higher fatigue strength than that of a single sided welds, but fatigue crack initiation and propagation can originate from the weld root if the welding procedure results in a partial penetration. It is clearly shown that the fatigue strength of the butt joint could be improved remarkably by ensuring full penetration. Nevertheless, increasing the fatigue strength of a butt joint by increasing the size of the weld is an uneconomical alternative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: This study aimed to determine the neuro-mechanical and metabolic adjustments in the lower limbs induced by the running anaerobic sprint test (the so-called RAST). METHODS: Eight professional football players performed 6 × 35 m sprints interspersed with 10 s of active recovery on artificial turf with their football shoes. Sprinting mechanics (plantar pressure insoles), root mean square activity of the vastus lateralis (VL), rectus femoris (RF), and biceps femoris (BF) muscles (surface electromyography, EMG) and VL muscle oxygenation (near-infrared spectroscopy) were monitored continuously. RESULTS: Sprint time, contact time and total stride duration increased from the first to the last repetition (+17.4, +20.0 and +16.6 %; all P < 0.05), while flight time and stride length remained constant. Stride frequency (-13.9 %; P < 0.001) and vertical stiffness decreased (-27.2 %; P < 0.001) across trials. Root mean square EMG activities of RF and BF (-18.7 and -18.1 %; P < 0.01 and 0.001, respectively), but not VL (-1.2 %; P > 0.05), decreased over sprint repetitions and were correlated with the increase in running time (r = -0.82 and -0.90; both P < 0.05). Together with a better maintenance of RF and BF muscles activation levels over sprint repetitions, players with a better repeated-sprint performance (lower cumulated times) also displayed faster muscle de- (during sprints) and re-oxygenation (during recovery) rates (r = -0.74 and -0.84; P < 0.05 and 0.01, respectively). CONCLUSION: The repeated anaerobic sprint test leads to substantial alterations in stride mechanics and leg-spring behaviour. Our results also strengthen the link between repeated-sprint ability and the change in neuromuscular activation as well as in muscle de- and re-oxygenation rates.