951 resultados para maximum rainfall
Resumo:
'Maximum Available Feedback' is Bode's term for the highest possible loop gain over a given bandwidth, with specified stability margins, in a single loop feedback system. His work using asymptotic analysis allowed Bode to develop a methodology for achieving this. However, the actual system performance differs from that specified, due to the use of asymptotic approximations, and the author[2] has described how, for instance, the actual phase margin is often much lower than required when the bandwidth is high, and proposed novel modifications to the asymptotes to address the issue. This paper gives some new analysis of such systems, showing that the method also contravenes Bode's definition of phase margin, and shows how the author's modifications can be used for different amounts of bandwidth.
Resumo:
Bode's method for obtaining 'maximum obtainable feedback' is a good example of a nontrivial feedback system design technique, but it is largely overlooked. This paper shows how the associated mathematics can be simplified and linear elements used in its implementation, so as to make it accessible for teaching to undergraduates.
Resumo:
A feedback system for control or electronics should have high loop gain, so that its output is close to its desired state, and the effects of changes in the system and of disturbances are minimised. Bode proposed a method for single loop feedback systems to obtain the maximum available feedback, defined as the largest possible loop gain over a bandwidth pertinent to the system, with appropriate gain and phase margins. The method uses asymptotic approximations, and this paper describes some novel adjustments to the asymptotes, so that the final system often exceeds the maximum available feedback. The implementation of the method requires the cascading of a series of lead-lag element. This paper describes a new way to determine how many elements should be used.
Resumo:
The recursive circulant RC(2(n), 4) enjoys several attractive topological properties. Let max_epsilon(G) (m) denote the maximum number of edges in a subgraph of graph G induced by m nodes. In this paper, we show that max_epsilon(RC(2n,4))(m) = Sigma(i)(r)=(0)(p(i)/2 + i)2(Pi), where p(0) > p(1) > ... > p(r) are nonnegative integers defined by m = Sigma(i)(r)=(0)2(Pi). We then apply this formula to find the bisection width of RC(2(n), 4). The conclusion shows that, as n-dimensional cube, RC(2(n), 4) enjoys a linear bisection width. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Rainfall can be modeled as a spatially correlated random field superimposed on a background mean value; therefore, geostatistical methods are appropriate for the analysis of rain gauge data. Nevertheless, there are certain typical features of these data that must be taken into account to produce useful results, including the generally non-Gaussian mixed distribution, the inhomogeneity and low density of observations, and the temporal and spatial variability of spatial correlation patterns. Many studies show that rigorous geostatistical analysis performs better than other available interpolation techniques for rain gauge data. Important elements are the use of climatological variograms and the appropriate treatment of rainy and nonrainy areas. Benefits of geostatistical analysis for rainfall include ease of estimating areal averages, estimation of uncertainties, and the possibility of using secondary information (e.g., topography). Geostatistical analysis also facilitates the generation of ensembles of rainfall fields that are consistent with a given set of observations, allowing for a more realistic exploration of errors and their propagation in downstream models, such as those used for agricultural or hydrological forecasting. This article provides a review of geostatistical methods used for kriging, exemplified where appropriate by daily rain gauge data from Ethiopia.
The TAMORA algorithm: satellite rainfall estimates over West Africa using multi-spectral SEVIRI data
Resumo:
A multi-spectral rainfall estimation algorithm has been developed for the Sahel region of West Africa with the purpose of producing accumulated rainfall estimates for drought monitoring and food security. Radar data were used to calibrate multi-channel SEVIRI data from MSG, and a probability of rainfall at several different rain-rates was established for each combination of SEVIRI radiances. Radar calibrations from both Europe (the SatPrecip algorithm) and Niger (TAMORA algorithm) were used. 10 day estimates were accumulated from SatPrecip and TAMORA and compared with kriged gauge data and TAMSAT satellite rainfall estimates over West Africa. SatPrecip was found to produce large overestimates for the region, probably because of its non-local calibration. TAMORA was negatively biased for areas of West Africa with relatively high rainfall, but its skill was comparable to TAMSAT for the low-rainfall region climatologically similar to its calibration area around Niamey. These results confirm the high importance of local calibration for satellite-derived rainfall estimates. As TAMORA shows no improvement in skill over TAMSAT for dekadal estimates, the extra cloud-microphysical information provided by multi-spectral data may not be useful in determining rainfall accumulations at a ten day timescale. Work is ongoing to determine whether it shows improved accuracy at shorter timescales.
Resumo:
The extinction of dinosaurs at the Cretaceous/Paleogene (K/Pg) boundary was the seminal event that opened the door for the subsequent diversification of terrestrial mammals. Our compilation of maximum body size at the ordinal level by sub-epoch shows a near-exponential increase after the K/Pg. On each continent, the maximum size of mammals leveled off after 40 million years ago and thereafter remained approximately constant. There was remarkable congruence in the rate, trajectory, and upper limit across continents, orders, and trophic guilds, despite differences in geological and climatic history, turnover of lineages, and ecological variation. Our analysis suggests that although the primary driver for the evolution of giant mammals was diversification to fill ecological niches, environmental temperature and land area may have ultimately constrained the maximum size achieved.
Resumo:
Changes in climate variability and, in particular, changes in extreme climate events are likely to be of far more significance for environmentally vulnerable regions than changes in the mean state. It is generally accepted that sea-surface temperatures (SSTs) play an important role in modulating rainfall variability. Consequently, SSTs can be prescribed in global and regional climate modelling in order to study the physical mechanisms behind rainfall and its extremes. Using a satellite-based daily rainfall historical data set, this paper describes the main patterns of rainfall variability over southern Africa, identifies the dates when extreme rainfall occurs within these patterns, and shows the effect of resolution in trying to identify the location and intensity of SST anomalies associated with these extremes in the Atlantic and southwest Indian Ocean. Derived from a Principal Component Analysis (PCA), the results also suggest that, for the spatial pattern accounting for the highest amount of variability, extremes extracted at a higher spatial resolution do give a clearer indication regarding the location and intensity of anomalous SST regions. As the amount of variability explained by each spatial pattern defined by the PCA decreases, it would appear that extremes extracted at a lower resolution give a clearer indication of anomalous SST regions.
Resumo:
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UKMeteorological Office Hadley Centre’s climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is underestimated (over-estimated) over wet (dry) regions of southern Africa.