918 resultados para maximal oxygen uptake
Resumo:
[EN] Several weeks of intense endurance training enhances mitochondrial biogenesis in humans. Whether a single bout of exercise alters skeletal muscle mitochondrial DNA (mtDNA) content remains unexplored. Double-stranded mtDNA, estimated by slot-blot hybridization and real time PCR and expressed as mtDNA-to-nuclear DNA ratio (mtDNA/nDNA) was obtained from the vastus lateralis muscle of healthy human subjects to investigate whether skeletal muscle mtDNA changes during fatiguing and nonfatiguing prolonged moderate intensity [2.0-2.5 h; approximately 60% maximal oxygen consumption (Vo(2 max))] and short repeated high-intensity exercise (5-8 min; approximately 110% Vo(2 max)). In control resting and light exercise (2 h; approximately 25% Vo(2 max)) studies, mtDNA/nDNA did not change. Conversely, mtDNA/nDNA declined after prolonged fatiguing exercise (0.863 +/- 0.061 vs. 1.101 +/- 0.067 at baseline; n = 14; P = 0.005), remained lower after 24 h of recovery, and was restored after 1 wk. After nonfatiguing prolonged exercise, mtDNA/nDNA tended to decline (n = 10; P = 0.083) but was reduced after three repeated high-intensity exercise bouts (0.900 +/- 0.049 vs. 1.067 +/- 0.071 at baseline; n = 7; P = 0.013). Our findings indicate that prolonged and short repeated intense exercise can lead to significant reductions in human skeletal muscle mtDNA content, which might function as a signal stimulating mitochondrial biogenesis with exercise training.
Resumo:
[EN] In this review we integrate ideas about regional and systemic circulatory capacities and the balance between skeletal muscle blood flow and cardiac output during heavy exercise in humans. In the first part of the review we discuss issues related to the pumping capacity of the heart and the vasodilator capacity of skeletal muscle. The issue is that skeletal muscle has a vast capacity to vasodilate during exercise [approximately 300 mL (100 g)(-1) min(-1)], but the pumping capacity of the human heart is limited to 20-25 L min(-1) in untrained subjects and approximately 35 L min(-1) in elite endurance athletes. This means that when more than 7-10 kg of muscle is active during heavy exercise, perfusion of the contracting muscles must be limited or mean arterial pressure will fall. In the second part of the review we emphasize that there is an interplay between sympathetic vasoconstriction and metabolic vasodilation that limits blood flow to contracting muscles to maintain mean arterial pressure. Vasoconstriction in larger vessels continues while constriction in smaller vessels is blunted permitting total muscle blood flow to be limited but distributed more optimally. This interplay between sympathetic constriction and metabolic dilation during heavy whole-body exercise is likely responsible for the very high levels of oxygen extraction seen in contracting skeletal muscle. It also explains why infusing vasodilators in the contracting muscles does not increase oxygen uptake in the muscle. Finally, when approximately 80% of cardiac output is directed towards contracting skeletal muscle modest vasoconstriction in the active muscles can evoke marked changes in arterial pressure.
Resumo:
[EN] Pulmonary gas exchange and acid-base state were compared in nine Danish lowlanders (L) acclimatized to 5,260 m for 9 wk and seven native Bolivian residents (N) of La Paz (altitude 3,600-4,100 m) brought acutely to this altitude. We evaluated normalcy of arterial pH and assessed pulmonary gas exchange and acid-base balance at rest and during peak exercise when breathing room air and 55% O2. Despite 9 wk at 5,260 m and considerable renal bicarbonate excretion (arterial plasma HCO3- concentration = 15.1 meq/l), resting arterial pH in L was 7.48 +/- 0.007 (significantly greater than 7.40). On the other hand, arterial pH in N was only 7.43 +/- 0.004 (despite arterial O2 saturation of 77%) after ascent from 3,600-4,100 to 5,260 m in 2 h. Maximal power output was similar in the two groups breathing air, whereas on 55% O2 only L showed a significant increase. During exercise in air, arterial PCO2 was 8 Torr lower in L than in N (P < 0.001), yet PO2 was the same such that, at maximal O2 uptake, alveolar-arterial PO2 difference was lower in N (5.3 +/- 1.3 Torr) than in L (10.5 +/- 0.8 Torr), P = 0.004. Calculated O2 diffusing capacity was 40% higher in N than in L and, if referenced to maximal hyperoxic work, capacity was 73% greater in N. Buffering of lactic acid was greater in N, with 20% less increase in base deficit per millimole per liter rise in lactate. These data show in L persistent alkalosis even after 9 wk at 5,260 m. In N, the data show 1) insignificant reduction in exercise capacity when breathing air at 5,260 m compared with breathing 55% O2; 2) very little ventilatory response to acute hypoxemia (judged by arterial pH and arterial PCO2 responses to hyperoxia); 3) during exercise, greater pulmonary diffusing capacity than in L, allowing maintenance of arterial PO2 despite lower ventilation; and 4) better buffering of lactic acid. These results support and extend similar observations concerning adaptation in lung function in these and other high-altitude native groups previously performed at much lower altitudes.
Resumo:
BACKGROUND: Functional magnetic resonance imaging (fMRI) of fluorine-19 allows for the mapping of oxygen partial pressure within perfluorocarbons in the alveolar space (Pao(2)). Theoretically, fMRI-detected Pao(2) can be combined with the Fick principle approach, i.e., a mass balance of oxygen uptake by ventilation and delivery by perfusion, to quantify the ventilation-perfusion ratio (Va/Q) of a lung region: The mixed venous blood and the inspiratory oxygen fraction, which are equal for all lung regions, are measured. In addition, the local expiratory oxygen fraction and the end capillary oxygen content, both of which may differ between the lung regions, are calculated using the fMRI-detected Pao(2). We investigated this approach by numerical simulations and applied it to quantify local Va/Q in the perfluorocarbons during partial liquid ventilation. METHODS: Numerical simulations were performed to analyze the sensitivity of the Va/Q calculation and to compare this approach with another one proposed by Rizi et al. in 2004 (Magn Reson Med 2004;52:65-72). Experimentally, the method was used during partial liquid ventilation in 7 anesthetized pigs. The Pao(2) distribution in intraalveolar perflubron was measured by fluorine-19 MRI. Respiratory gas fractions together with arterial and mixed venous blood samples were taken to quantify oxygen partial pressure and content. Using the Fick principle, the local Va/Q was estimated. The impact of gravity (nondependent versus dependent) of perflubron dose (10 vs 20 mL/kg body weight) and of inspired oxygen fraction (Fio(2)) (0.4-1.0) on Va/Q was examined. RESULTS: In numerical simulations, the Fick principle proved to be appropriate over the Va/Q range from 0.02 to 2.5. Va/Q values were in acceptable agreement with the method published by Rizi et al. In the experimental setting, low mean Va/Q values were found in perflubron (confidence interval [CI] 0.08-0.29 with 20 mL/kg perflubron). At this dose, Va/Q in the nondependent lung was higher (CI 0.18-0.39) than in the dependent lung regions (CI 0.06-0.16; P = 0.006; Student t test). Differences depending on Fio(2) or perflubron dose were, however, small. CONCLUSION: The results show that derivation of Va/Q from local Po(2) measurements using fMRI in perflubron is feasible. The low detected Va/Q suggests that oxygen transport into the perflubron-filled alveolar space is significantly restrained.
Resumo:
Attempting to achieve the high diversity of training goals in modern competitive alpine skiing simultaneously can be difficult and may lead to compromised overall adaptation. Therefore, we investigated the effect of block training periodization on maximal oxygen consumption (VO2max) and parameters of exercise performance in elite junior alpine skiers. Six female and 15 male athletes were assigned to high-intensity interval (IT, N = 13) or control training groups (CT, N = 8). IT performed 15 high-intensity aerobic interval (HIT) sessions in 11 days. Sessions were 4 x 4 min at 90-95% of maximal heart rate separated by 3-min recovery periods. CT continued their conventionally mixed training, containing endurance and strength sessions. Before and 7 days after training, subjects performed a ramp incremental test followed by a high-intensity time-to-exhaustion (tlim) test both on a cycle ergometer, a 90-s high-box jump test as well as countermovement (CMJ) and squat jumps (SJ) on a force plate. IT significantly improved relative VO2max by 6.0% (P < 0.01; male +7.5%, female +2.1%), relative peak power output by 5.5% (P < 0.01) and power output at ventilatory threshold 2 by 9.6% (P < 0.01). No changes occurred for these measures in CT. tlim remained unchanged in both groups. High-box jump performance was significantly improved in males of IT only (4.9%, P < 0.05). Jump peak power (CMJ -4.8%, SJ -4.1%; P < 0.01), but not height decreased in IT only. For competitive alpine skiers, block periodization of HIT offers a promising way to efficiently improve VO2max and performance. Compromised explosive jump performance might be associated with persisting muscle fatigue.
Resumo:
We tested whether the better subjective exercise tolerance perceived by mountaineers after altitude acclimatization relates to enhanced exercise economy. Thirty-two mountaineers performed progressive bicycle exercise to exhaustion at 490 m and twice at 5533 m (days 6–7 and day 11), respectively, during an expedition to Mt. Muztagh Ata. Maximal work rate (Wmax) decreased from mean ± SD 356 ± 73 watts at 490 m to 191 ± 49 watts and 193 ± 45 watts at 5533 m, days 6–7 and day 11, respectively; corresponding maximal oxygen uptakes (VO2max) were 50.7 ± 9.5, 26.3 ± 5.6, 24.7 ± 7.0 mL/min/kg (P = 0.0001 5533 m vs 490 m). On days 6–7 (5533 m), VO2 at 75% Wmax (152 ± 37 watts) was 1.75 ± 0.45 L/min, oxygen saturation 68 ± 8%. On day 11 (5533 m), at the same submaximal work rate, VO2 was lower (1.61 ± 0.47 L/min, P < 0.027) indicating improved net efficiency; oxygen saturation was higher (74 ± 7%, P < 0.0004) but ratios of VO2 to work rate increments remained unchanged. On day 11, mountaineers climbed faster from 4497 m to 5533 m than on days 5–6 but perceived less effort (visual analog scale 50 ± 15 vs 57 ± 20, P = 0.006) and reduced symptoms of acute mountain sickness. We conclude that the better performance and subjective exercise tolerance after acclimatization were related to regression of acute mountain sickness and improved submaximal exercise economy because of lower metabolic demands for non-external work-performing functions.
Resumo:
Over the past decades, major progress in patient selection, surgical techniques and anaesthetic management have largely contributed to improved outcome in lung cancer surgery. The purpose of this study was to identify predictors of post-operative cardiopulmonary morbidity in patients with a forced expiratory volume in 1 s <80% predicted, who underwent cardiopulmonary exercise testing (CPET). In this observational study, 210 consecutive patients with lung cancer underwent CPET with completed data over a 9-yr period (2001-2009). Cardiopulmonary complications occurred in 46 (22%) patients, including four (1.9%) deaths. On logistic regression analysis, peak oxygen uptake (peak V'(O₂) and anaesthesia duration were independent risk factors of both cardiovascular and pulmonary complications; age and the extent of lung resection were additional predictors of cardiovascular complications, whereas tidal volume during one-lung ventilation was a predictor of pulmonary complications. Compared with patients with peak V'(O₂) >17 mL·kg⁻¹·min⁻¹, those with a peak V'(O₂) <10 mL·kg⁻¹·min⁻¹ had a four-fold higher incidence of cardiac and pulmonary morbidity. Our data support the use of pre-operative CPET and the application of an intra-operative protective ventilation strategy. Further studies should evaluate whether pre-operative physical training can improve post-operative outcome.
Resumo:
We examined the impact of physical activity (PA) on surrogate markers of cardiovascular health in adolescents. 52 healthy students (28 females, mean age 14.5 ± 0.7 years) were investigated. Microvascular endothelial function was assessed by peripheral arterial tonometry to determine reactive hyperemic index (RHI). Vagal activity was measured using 24 h analysis of heart rate variability [root mean square of successive normal-to-normal intervals (rMSSD)]. Exercise testing was performed to determine peak oxygen uptake ([Formula: see text]) and maximum power output. PA was assessed by accelerometry. Linear regression models were performed and adjusted for age, sex, skinfolds, and pubertal status. The cohort was dichotomized into two equally sized activity groups (low vs. high) based on the daily time spent in moderate-to-vigorous PA (MVPA, 3,000-5,200 counts(.)min(-1), model 1) and vigorous PA (VPA, >5,200 counts(.)min(-1), model 2). MVPA was an independent predictor for rMSSD (β = 0.448, P = 0.010), and VPA was associated with maximum power output (β = 0.248, P = 0.016). In model 1, the high MVPA group exhibited a higher vagal tone (rMSSD 49.2 ± 13.6 vs. 38.1 ± 11.7 ms, P = 0.006) and a lower systolic blood pressure (107.3 ± 9.9 vs. 112.9 ± 8.1 mmHg, P = 0.046). In model 2, the high VPA group had higher maximum power output values (3.9 ± 0.5 vs. 3.4 ± 0.5 W kg(-1), P = 0.012). In both models, no significant differences were observed for RHI and [Formula: see text]. In conclusion, in healthy adolescents, PA was associated with beneficial intensity-dependent effects on vagal tone, systolic blood pressure, and exercise capacity, but not on microvascular endothelial function.
Resumo:
Anaerobic digestion of food scraps has the potential to accomplish waste minimization, energy production, and compost or humus production. At Bucknell University, removal of food scraps from the waste stream could reduce municipal solid waste transportation costs and landfill tipping fees, and provide methane and humus for use on campus. To determine the suitability of food waste produced at Bucknell for high-solids anaerobic digestion (HSAD), a year-long characterization study was conducted. Physical and chemical properties, waste biodegradability, and annual production of biodegradable waste were assessed. Bucknell University food and landscape waste was digested at pilot-scale for over a year to test performance at low and high loading rates, ease of operation at 20% solids, benefits of codigestion of food and landscape waste, and toprovide digestate for studies to assess the curing needs of HSAD digestate. A laboratory-scale curing study was conducted to assess the curing duration required to reduce microbial activity, phytotoxicity, and odors to acceptable levels for subsequent use ofhumus. The characteristics of Bucknell University food and landscape waste were tested approximately weekly for one year, to determine chemical oxygen demand (COD), total solids (TS), volatile solids (VS), and biodegradability (from batch digestion studies). Fats, oil, and grease and total Kjeldahl nitrogen were also tested for some food waste samples. Based on the characterization and biodegradability studies, Bucknell University dining hall food waste is a good candidate for HSAD. During batch digestion studies Bucknell University food waste produced a mean of 288 mL CH4/g COD with a 95%confidence interval of 0.06 mL CH4/g COD. The addition of landscape waste for digestion increased methane production from both food and landscape waste; however, because the landscape waste biodegradability was extremely low the increase was small.Based on an informal waste audit, Bucknell could collect up to 100 tons of food waste from dining facilities each year. The pilot-scale high-solids anaerobic digestion study confirmed that digestion ofBucknell University food waste combined with landscape waste at a low organic loading rate (OLR) of 2 g COD/L reactor volume-day is feasible. During low OLR operation, stable reactor performance was demonstrated through monitoring of biogas production and composition, reactor total and volatile solids, total and soluble chemical oxygendemand, volatile fatty acid content, pH, and bicarbonate alkalinity. Low OLR HSAD of Bucknell University food waste and landscape waste combined produced 232 L CH4/kg COD and 229 L CH4/kg VS. When OLR was increased to high loading (15 g COD/L reactor volume-day) to assess maximum loading conditions, reactor performance became unstable due to ammonia accumulation and subsequent inhibition. The methaneproduction per unit COD also decreased (to 211 L CH4/kg COD fed), although methane production per unit VS increased (to 272 L CH4/kg VS fed). The degree of ammonia inhibition was investigated through respirometry in which reactor digestate was diluted and exposed to varying concentrations of ammonia. Treatments with low ammoniaconcentrations recovered quickly from ammonia inhibition within the reactor. The post-digestion curing process was studied at laboratory-scale, to provide a preliminary assessment of curing duration. Digestate was mixed with woodchips and incubated in an insulated container at 35 °C to simulate full-scale curing self-heatingconditions. Degree of digestate stabilization was determined through oxygen uptake rates, percent O2, temperature, volatile solids, and Solvita Maturity Index. Phytotoxicity was determined through observation of volatile fatty acid and ammonia concentrations.Stabilization of organics and elimination of phytotoxic compounds (after 10–15 days of curing) preceded significant reductions of volatile sulfur compounds (hydrogen sulfide, methanethiol, and dimethyl sulfide) after 15–20 days of curing. Bucknell University food waste has high biodegradability and is suitable for high-solids anaerobic digestion; however, it has a low C:N ratio which can result in ammonia accumulation under some operating conditions. The low biodegradability of Bucknell University landscape waste limits the amount of bioavailable carbon that it can contribute, making it unsuitable for use as a cosubstrate to increase the C:N ratio of food waste. Additional research is indicated to determine other cosubstrates with higher biodegradabilities that may allow successful HSAD of Bucknell University food waste at high OLRs. Some cosubstrates to investigate are office paper, field residues, or grease trap waste. A brief curing period of less than 3 weeks was sufficient to produce viable humus from digestate produced by low OLR HSAD of food and landscape waste.
Resumo:
Background Whole-body water immersion leads to a significant shift of blood from the periphery into the intra-thoracic circulation, followed by an increase in central venous pressure and heart volume. In patients with severely reduced left ventricular function, this hydrostatically in-duced volume shift might overstrain the cardiovascular adaptive mechanisms and lead to cardiac decompensation. The aim of this study is to assess the hemodynamic response to water immer-sion, gymnastics and swimming in patients with heart failure (CHF). Methods We examined 10 patients with compensated CHF (62.9 +/- 6.3 years, EF 31.5 +/- 4.1%, peak VO2 19.4 +/- 2.8 ml/kg/min.), 10 patients with coronary artery disease (CAD) but preserved left ventricular function (57.2 +/- 5.6 years, EF 63.9 +/- 5.5%, peak VO2 28.0 +/- 6.3 ml/kg/min.) and 10 healthy subjects (32.8 +/- 7.2 years, peak VO2 45.6 +/- 6.0 ml/kg/min.). Hemodynamic response to thermo-neutral (32 degrees C) water immersion and exercise was measured using a non-invasive foreign gas rebreathing method during stepwise water immersion, water gymnastics and swimming. Results Water immersion up to the chest increased cardiac index by 19% in healthy subjects, by 21% in CAD patients and 16% in CHF patients. While some CHF patients showed a decrease of stroke volume during immersion, all subjects were able to increase cardiac index (by 87% in healthy subjects, 77% in CAD patients and 53% in CHF patients). Oxygen uptake during swim-ming was 9.7 +/- 3.3 ml/kg/min. in CHF patients, 12.4 +/- 3.5 ml/kg/min. in CAD patients and 13.9 +/- 4.0 ml/kg/min. in healthy subjects. Conclusions Patients with severely reduced left ventricular function but stable clinical conditions and a minimal peak VO2 of at least 15 ml/kg/min. during a symptom-limited exercise stress test tolerate water immersion and swimming in thermo-neutral water well. Although cardiac in-dex and oxygen uptake are lower compared with CAD patients with preserved left ventricular function and healthy controls, these patients are able to increase cardiac index adequately during water immersion and swimming.
Resumo:
The number of elderly people is growing in western populations, but only few maximal performance data exist for people >75 years, in particular for European octogenarians. This study was performed to characterize maximal performance of 55 independently living subjects (32 women, 81.1 +/- 3.4 years; 23 men, 81.7 +/- 2.9 years) with a focus on sex differences. Maximal performance was determined in a ramp test to exhaustion on a bicycle ergometer with ergospirometry, electrocardiogram and blood lactate measurements. Maximal isometric extension strength of the legs (MEL) was measured on a force platform in a seated position. Body composition was quantified by X-ray absorptiometry. In >25% of the subjects, serious cardiac abnormalities were detected during the ramp test with men more frequently being affected than women. Maximal oxygen consumption and power output were 18.2 +/- 3.2 versus 25.9 +/- 5.9 ml min(-1) kg(-1) and 66 +/- 12 versus 138 +/- 40 W for women versus men, with a significant sex difference for both parameters. Men outperformed women for MEL with 19.0 +/- 3.8 versus 13.6 +/- 3.3 N kg(-1). Concomitantly, we found a higher proportion of whole body fat in women (32.1 +/- 6.2%) compared to men (20.5 +/- 4.4%). Our study extends previously available maximal performance data for endurance and strength to independently living European octogenarians. As all sex-related differences were still apparent after normalization to lean body mass, it is concluded that it is essential to differentiate between female and male subjects when considering maximal performance parameters in the oldest segment of our population.
Resumo:
Therapy has improved the survival of heart failure (HF) patients. However, many patients progress to advanced chronic HF (ACHF). We propose a practical clinical definition and describe the characteristics of this condition. Patients that are generally recognised as ACHF often exhibit the following characteristics: 1) severe symptoms (NYHA class III to IV); 2) episodes with clinical signs of fluid retention and/or peripheral hypoperfusion; 3) objective evidence of severe cardiac dysfunction, shown by at least one of the following: left ventricular ejection fraction<30%, pseudonormal or restrictive mitral inflow pattern at Doppler-echocardiography; high left and/or right ventricular filling pressures; elevated B-type natriuretic peptides; 4) severe impairment of functional capacity demonstrated by either inability to exercise, a 6-minute walk test distance<300 m or a peak oxygen uptake<12-14 ml/kg/min; 5) history of >1 HF hospitalisation in the past 6 months; 6) presence of all the previous features despite optimal therapy. This definition identifies a group of patients with compromised quality of life, poor prognosis, and a high risk of clinical events. These patients deserve effective therapeutic options and should be potential targets for future clinical research initiatives.
Resumo:
BACKGROUND: Adult patients with repaired tetralogy of Fallot (rTOF) often have diminished exercise capacity. The primary objective of this study was to examine whether abnormalities of biventricular function play a role in exercise limitation in patients with rTOF. METHODS: This was a retrospective review of 99 adult patients with rTOF. Right ventricular (RV) and left ventricular (LV) function were assessed echocardiographically using the myocardial performance index (MPI). Maximal oxygen consumption (VO(2) Max) was measured during a level 1 cardiopulmonary exercise test. RESULTS: The mean age of the cohort was 34 +/- 11 years (50% females). Although most of the patients reported good functional capacity, the peak Vo(2)max was decreased at 22 +/- 6 mL/kg per minute (66% +/- 13% predicted Vo(2)max for age and sex). The mean RV and LV MPI were 0.30 +/- 0.07 and 0.42 +/- 0.09, respectively. In the multivariate model, higher RV MPI (P = .04) and LV MPI (P = .005) values, representing impaired ventricular function, were associated with diminished Vo(2)max. There was a significant correlation between the RV and LV MPI (r = 0.54, P = .001). CONCLUSIONS: Impairment of RV and LV function, as measured by MPI, is associated with diminished exercise capacity in patients with repaired tetralogy of Fallot. Furthermore, there is a linear relationship between the RV and LV function suggesting that ventricular interactions are contributing to the limited exercise capacity in this group of patients. Strategies aimed at preserving biventricular function or improving adverse ventricular interactions could help to improve functional capacity in these patients.
Resumo:
This study evaluated the effects of 8 weeks of eccentric endurance training (EET) in male subjects (age range 42-66 years) with coronary artery disease (CAD). EET was compared to concentric endurance training (CET) carried out at the same metabolic exercise intensity, three times per week for half an hour. CET ( n=6) was done on a conventional cycle ergometer and EET ( n=6) on a custom-built motor-driven ergometer. During the first 5 weeks of the training program the metabolic load was progressively increased to 60% of peak oxygen uptake in both groups. At this metabolic load, mechanical work rate achieved was 97 (8) W [mean (SE)] for CET and 338 (34) W for EET, respectively. Leg muscle mass was determined by dual-energy X-ray absorptiometry, quadriceps strength with an isokinetic dynamometer and muscle fibre composition of the vastus lateralis muscle with morphometry. The leg muscle mass increased significantly in both groups by some 3%. Strength parameters of knee extensors improved in EET only. Significant changes of +11 (4.9)%, +15 (3.2)% and +9 (2.5)% were reached for peak isometric torque and peak concentric torques at 60 degrees s(-1) and 120 degrees s(-1), respectively. Fibre size increased significantly by 19% in CET only. In conclusion, the present investigation showed that EET is feasible in middle-aged CAD patients and has functional advantages over CET by increasing muscle strength. Muscle mass increased similarly in both groups whereas muscle structural composition was differently affected by the respective training protocols. Potential limitations of this study are the cautiously chosen conditioning protocol and the restricted number of subjects.
Resumo:
Context: Sarcopenia is thought to be associated with mitochondrial (M) loss. It is unclear whether the decrease in M content is consequent to aging per se or to decreased physical activity. Objectives: To examine the influence of fitness on M content and function, and to assess whether exercise could improve M function in older adults. Design and subjects: Three distinct studies were conducted: 1) a cross-sectional observation comparing M content and fitness in a large heterogeneous cohort of older adults; 2) a case-control study comparing chronically endurance-trained older adults (A) and sedentary (S) subjects matched for age and gender; 3) a 4-month exercise intervention in S. Setting: University-based clinical research center Outcomes: M volume density (Mv) was assessed by electron microscopy from vastus lateralis biopsies, electron transport chain proteins (ETC) by western blotting, mRNAs for transcription factors involved in M biogenesis by qRT-PCR and in-vivo oxidative capacity (ATPmax) by (31)P-MR spectroscopy. Peak oxygen uptake (VO2peak) was measured by GXT. Results: VO2peak was strongly correlated with Mv in eighty 60-80 yo adults. Comparison of A vs. S revealed differences in Mv, ATPmax and some ETC complexes. Finally, exercise intervention confirmed that S are able to recover Mv, ATPmax and specific transcription factors. Conclusions: These data suggest that 1) aging per se is not the primary culprit leading to M dysfunction, 2) an aerobic exercise program, even at an older age, can ameliorate the loss in skeletal muscle M content and may prevent aging muscle comorbidities and 3) the improvement of M function is all about content.