999 resultados para marcadores neurais
Resumo:
O presente trabalho apresenta uma nova metodologia de localização de faltas em sistemas de distribuição de energia. O esquema proposto é capaz de obter uma estimativa precisa da localização tanto de faltas sólidas e lineares quanto de faltas de alta impedância. Esta última classe de faltas representa um grande problema para as concessionárias distribuidoras de energia elétrica, uma vez que seus efeitos nem sempre são detectados pelos dispositivos de proteção utilizados. Os algoritmos de localização de faltas normalmente presentes em relés de proteção digitais são formulados para faltas sólidas ou com baixa resistência de falta. Sendo assim, sua aplicação para localização de faltas de alta impedância resulta em estimativas errôneas da distância de falta. A metodologia proposta visa superar esta deficiência dos algoritmos de localização tradicionais através da criação de um algoritmo baseado em redes neurais artificiais que poderá ser adicionado como uma rotina adicional de um relé de proteção digital. O esquema proposto utiliza dados oscilográficos pré e pós-falta que são processados de modo que sua localização possa ser estimada através de um conjunto de características extraídas dos sinais de tensão e corrente. Este conjunto de características é classificado pelas redes neurais artificiais de cuja saída resulta um valor relativo a distância de falta. Além da metodologia proposta, duas metodologias para localização de faltas foram implementadas, possibilitando a obtenção de resultados comparativos. Os dados de falta necessários foram obtidos através de centenas de simulações computacionais de um modelo de alimentador radial de distribuição. Os resultados obtidos demonstram a viabilidade do uso da metodologia proposta para localização de faltas em sistemas de distribuição de energia, especialmente faltas de alta impedância.
Resumo:
O gênero Paspalum L. compreende aproximadamente 400 espécies no mundo e cerca de 220 no Brasil. Paspalum é ecologicamente e economicamente importante e tem sido utilizado como pastagem. Paspalum notatum Flügge (grama-forquilha) é uma valorosa gramínea forrageira nos subtrópicos. Esta espécie consiste de vários biótipos sexuais (diplóides) e apomíticos (tetraplóides, ocasionalmente tri e pentaplóides). Neste trabalho, os Inter Simple Sequence repeat (ISSR) foram utilizados para acessar a diversidade genética da grama-forquilha (Paspalum notatum). Os tecidos vegetativos de 95 acessos de grama-forquilha foram obtidos de vários locais da América do Sul (Brasil, Argentina e Uruguai). Um total de 91 de fragmentos reproduzível ISSR foi observado. Oitenta e nove fragmentos (97,5% do total observado) foram polimórficos. A análise de agrupamento (UPGMA) foi realizada para o conjunto de dados ISSR. Os resultados ilustram as relações genéticas entre 95 acessos de Paspalum notatum. A comparação entre dados moleculares, morfológicos e nível de ploidia foi realizada. Em resumo, os marcadores moleculares ISSR mostraram-se eficientes para distinção dos genótipos analisados e observou-se uma variabilidade ampla para a espécie. Estes resultados adicionam novas informações sobre a diversidade genética em Paspalum notatum, conseqüentemente contribuindo para o conhecimento biológico desta espécie e fornecendo subsídios para futuros programas de melhoramento genético e para programas de conservação.
Resumo:
Em economias com regimes de metas de inflação é comum que Bancos Centrais intervenham para reduzir os níveis de volatilidade do dólar, sendo estas intervenções mais comuns em países não desenvolvidos. No caso do Brasil, estas intervenções acontecem diretamente no mercado à vista, via mercado de derivativos (através de swaps cambiais) ou ainda com operações a termo, linhas de liquidez e via empréstimos. Neste trabalho mantemos o foco nas intervenções no mercado à vista e de derivativos pois estas representam o maior volume financeiro relacionado à este tipo de atuação oficial. Existem diversos trabalhos que avaliam o impacto das intervenções e seus graus de sucesso ou fracasso mas relativamente poucos que abordam o que levaria o Banco Central do Brasil (BCB) a intervir no mercado. Tentamos preencher esta lacuna avaliando as variáveis que podem se relacionar às intervenções do BCB no mercado de câmbio e adicionalmente verificando se essas variáveis se relacionam diferentemente com as intervenções de venda e compra de dólares. Para tal, além de utilizarmos regressões logísticas, como na maioria dos trabalhos sobre o tema, empregamos também a técnica de redes neurais, até onde sabemos inédita para o assunto. O período de estudo vai de 2005 a 2012, onde o BCB interveio no mercado de câmbio sob demanda e não de forma continuada por longos períodos de tempo, como nos anos mais recentes. Os resultados indicam que algumas variáveis são mais relevantes para o processo de intervenção vendendo ou comprando dólares, com destaque para a volatilidade implícita do câmbio nas intervenções que envolvem venda de dólares, resultado este alinhado com outros trabalhos sobre o tema.
Resumo:
Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model