873 resultados para linear mixing model
Resumo:
Assuming that nuclear matter can be treated as a perfect fluid, we study the propagation of perturbations in the baryon density at high temperature. The equation of state is derived from the non-linear Walecka model. The expansion of the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations lead to the breaking wave equation for the density perturbation. We solve it numerically for this perturbation and follow the propagation of the initial pulses.
Resumo:
The whole Valle Fertil-La Huerta section appears as a calc-alkaline plutonic suite typical of a destructive plate margin. New Sr and Nd isotopic whole-rock data and published whole-rock geochemistry suggest that the less-evolved intermediate (dioritic) rocks can be derived by magmatic differentiation, mainly by hornblende + plagioclase +/- Fe-Ti oxide fractional crystallization, from mafic (gabbroic) igneous precursors. Closed-system differentiation, however, cannot produce the typical intermediate (tonalitic) and silicic (granodioritic) plutonic rocks, which requires a preponderant contribution of crustal components. Intermediate and silicic plutonic rocks from Valle Fertil-La Huerta section have formed in a plate subduction setting where the thermal and material input of mantle-derived magmas promoted fusion of fertile metasedimentary rocks and favored mixing of gabbroic or dioritic magmas with crustal granitic melts. Magma mixing is observable in the field and evident in variations of chemical elemental parameters and isotopic ratios, revealing that hybridization coupled with fractionation of magmas took place in the crust. Consideration of the whole-rock geochemical and isotopic data in the context of the Famatinian-Puna magmatic belt as a whole demonstrates that the petrologic model postulated for the Sierra Valle Fertil-La Huerta section has the potential to explain the generation of plutonic and volcanic rocks across the Early Ordovician paleoarc from central and northwestern Argentina. As the petrologic model does not require the intervention of old Precambrian continental crust, the nature of the basement on which thick accretionary turbiditic sequences were deposited remains a puzzling aspect. Discussion in this paper provides insights into the nature of magmatic source rocks and mechanisms of magma generation in Cordilleran-type volcano-plutonic arcs of destructive plate margins. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Mixed models may be defined with or without reference to sampling, and can be used to predict realized random effects, as when estimating the latent values of study subjects measured with response error. When the model is specified without reference to sampling, a simple mixed model includes two random variables, one stemming from an exchangeable distribution of latent values of study subjects and the other, from the study subjects` response error distributions. Positive probabilities are assigned to both potentially realizable responses and artificial responses that are not potentially realizable, resulting in artificial latent values. In contrast, finite population mixed models represent the two-stage process of sampling subjects and measuring their responses, where positive probabilities are only assigned to potentially realizable responses. A comparison of the estimators over the same potentially realizable responses indicates that the optimal linear mixed model estimator (the usual best linear unbiased predictor, BLUP) is often (but not always) more accurate than the comparable finite population mixed model estimator (the FPMM BLUP). We examine a simple example and provide the basis for a broader discussion of the role of conditioning, sampling, and model assumptions in developing inference.
Resumo:
This thesis develops and evaluates statistical methods for different types of genetic analyses, including quantitative trait loci (QTL) analysis, genome-wide association study (GWAS), and genomic evaluation. The main contribution of the thesis is to provide novel insights in modeling genetic variance, especially via random effects models. In variance component QTL analysis, a full likelihood model accounting for uncertainty in the identity-by-descent (IBD) matrix was developed. It was found to be able to correctly adjust the bias in genetic variance component estimation and gain power in QTL mapping in terms of precision. Double hierarchical generalized linear models, and a non-iterative simplified version, were implemented and applied to fit data of an entire genome. These whole genome models were shown to have good performance in both QTL mapping and genomic prediction. A re-analysis of a publicly available GWAS data set identified significant loci in Arabidopsis that control phenotypic variance instead of mean, which validated the idea of variance-controlling genes. The works in the thesis are accompanied by R packages available online, including a general statistical tool for fitting random effects models (hglm), an efficient generalized ridge regression for high-dimensional data (bigRR), a double-layer mixed model for genomic data analysis (iQTL), a stochastic IBD matrix calculator (MCIBD), a computational interface for QTL mapping (qtl.outbred), and a GWAS analysis tool for mapping variance-controlling loci (vGWAS).
Resumo:
A disseminação do formato mp3 como padrão para arquivos de música, aliada ao crescimento da Internet, fez surgir uma poderosa rede de distribuição de música online. A extrema disponibilidade, diversidade de escolha e facilidade de acesso para quem possui banda larga em seus computadores fez crescer o download de músicas pela Internet, revolucionando o mundo fonográfico. O objetivo geral deste estudo é identificar quais fatores, na perspectiva do consumidor, têm maior influência no download gratuito de música pela Internet através de uma pesquisa exploratória de duas fases. Na primeira fase, qualitativa, foram realizadas entrevistas não estruturadas com usuários e consumidores de redes peer-to-peer de download de música pela Internet e entrevista semi-estruturada com um ex-executivo da indústria fonográfica. Na fase seguinte, quantitativa, foram aplicados questionários estruturados a pessoas que efetuam download de música pela Internet. Adotou-se a regressão linear múltipla como modelo para interpretar os dados colhidos junto à amostra e testar as hipóteses relacionadas as variáveis: acessibilidade ao produto, percepção de injustiça no preço e faixa etária. Os resultados sugerem a não rejeição das três hipóteses estudadas.
Resumo:
In this paper we construct common-factor portfolios using a novel linear transformation of standard factor models extracted from large data sets of asset returns. The simple transformation proposed here keeps the basic properties of the usual factor transformations, although some new interesting properties are further attached to them. Some theoretical advantages are shown to be present. Also, their practical importance is confirmed in two applications: the performance of common-factor portfolios are shown to be superior to that of asset returns and factors commonly employed in the finance literature.
Resumo:
A tese apresenta três ensaios empíricos sobre os padrões decisórios de magistrados no Brasil, elaborados à partir de bases de dados inéditas e de larga escala, que contém detalhes de dezenas de milhares de processos judiciais na primeira e na segunda instância. As bases de dados são coletadas pelo próprio autor através de programas-robô de coleta em massa de informações, aplicados aos "links" de acompanhamento processual de tribunais estaduais no Brasil (Paraná, Minas Gerais e Santa Catarina). O primeiro artigo avalia - com base em modelo estatístico - a importância de fatores extra-legais sobre os resultados de ações judiciais, na Justiça Estadual do Paraná. Isto é, se os juízes favorecem sistematicamente a parte hipossuficiente (beneficiária de Assistência Judiciária Gratuita). No segundo artigo, estuda-se a relação entre a duração de ações cíveis no primeiro grau e a probabilidade de reforma da sentença, utilizando-se dados da Justiça Estadual de Minas Gerais. O objetivo é avaliar se existe um dilema entre a duração e a qualidade das sentenças. Dito de outra forma, se existe um dilema entre a observância do direito ao devido processo legal e a celeridade processual. O último artigo teste a hipótese - no âmbito de apelações criminais e incidentes recursais no Tribunal de Justiça de Santa Catarina - de que as origens profissionais dos desembargadores influenciam seus padrões decisórios. Isto é, testa-se a hipótese de que desembargadores/relatores oriundos da carreira da advocacia são mais "garantistas" ( e desembargadores oriundos da carreira do Ministério Público são menos "garantistas") relativamente aos seus pares oriundos da carreira da magistratura. Testam-se as hipóteses com base em um modelo estatístico que explica a probabilidade de uma decisão recursal favorável ao réu, em função da origem de carreira do relator do recurso, além de um conjunto de características do processo e do órgão julgador.
Resumo:
This paper constructs an indicator of Brazilian GDP at the monthly ftequency. The peculiar instability and abrupt changes of regimes in the dynamic behavior of the Brazilian business cycle were explicitly modeled within nonlinear ftameworks. In particular, a Markov switching dynarnic factor model was used to combine several macroeconomic variables that display simultaneous comovements with aggregate economic activity. The model generates as output a monthly indicator of the Brazilian GDP and real time probabilities of the current phase of the Brazilian business cycle. The monthly indicator shows a remarkable historical conformity with cyclical movements of GDP. In addition, the estimated filtered probabilities predict ali recessions in sample and out-of-sample. The ability of the indicator in linear forecasting growth rates of GDP is also examined. The estimated indicator displays a better in-sample and out-of-sample predictive performance in forecasting growth rates of real GDP, compared to a linear autoregressive model for GDP. These results suggest that the estimated monthly indicator can be used to forecast GDP and to monitor the state of the Brazilian economy in real time.
Resumo:
Este trabalho avalia as previsões de três métodos não lineares — Markov Switching Autoregressive Model, Logistic Smooth Transition Autoregressive Model e Autometrics com Dummy Saturation — para a produção industrial mensal brasileira e testa se elas são mais precisas que aquelas de preditores naive, como o modelo autorregressivo de ordem p e o mecanismo de double differencing. Os resultados mostram que a saturação com dummies de degrau e o Logistic Smooth Transition Autoregressive Model podem ser superiores ao mecanismo de double differencing, mas o modelo linear autoregressivo é mais preciso que todos os outros métodos analisados.
Resumo:
A escolha da cidade do Rio de Janeiro como sede de grandes eventos esportivos mundiais, a Copa do Mundo de Futebol de 2014 e os Jogos Olímpicos de 2016, colocou-a no centro de investimentos em infraestrutura, mobilidade urbana e segurança pública, com consequente impacto no mercado imobiliário, tanto de novos lançamentos de empreendimentos, quanto na revenda de imóveis usados. Acredita-se que o preço de um imóvel dependa de uma relação entre suas características estruturais como quantidade de quartos, suítes, vagas de garagem, presença de varanda, tal como sua localização, proximidade com centros de trabalho, entretenimento e áreas valorizadas ou degradadas. Uma das técnicas para avaliar a contribuição dessas características para a formação do preço do imóvel, conhecido na Econométrica como Modelagem Hedônica de Preços, é uma aplicação de regressão linear multivariada onde a variável dependente é o preço e as variáveis independentes, as respectivas características que deseja-se modelar. A utilização da regressão linear implica em observar premissas que devem ser atendidas para a confiabilidade dos resultados a serem analisados, tais como independência e homoscedasticidade dos resíduos e não colinearidade entre as variáveis independentes. O presente trabalho objetiva aplicar a modelagem hedônica de preços para imóveis localizados na cidade do Rio de Janeiro em um modelo de regressão linear multivariada, em conjunto com outras fontes de dados para a construção de variáveis de acessibilidade e socioambiental a fim de verificar a relação de importância entre elas para a formação do preço e, em particular, exploramos brevemente a tendência de preços em função da distância a favelas. Em atenção aos pré-requisitos observados para a aplicação de regressão linear, verificamos que a premissa de independência dos preços não pode ser atestada devido a constatação da autocorrelação espacial entre os imóveis, onde não apenas as características estruturais e de acessibilidade são levadas em consideração para a precificação do bem, mas principalmente a influência mútua que os imóveis vizinhos exercem um ao outro.
Resumo:
This work assesses the forecasts of three nonlinear methods | Markov Switching Autoregressive Model, Logistic Smooth Transition Auto-regressive Model, and Auto-metrics with Dummy Saturation | for the Brazilian monthly industrial production and tests if they are more accurate than those of naive predictors such as the autoregressive model of order p and the double di erencing device. The results show that the step dummy saturation and the logistic smooth transition autoregressive can be superior to the double di erencing device, but the linear autoregressive model is more accurate than all the other methods analyzed.
Resumo:
Differences-in-Differences (DID) is one of the most widely used identification strategies in applied economics. However, how to draw inferences in DID models when there are few treated groups remains an open question. We show that the usual inference methods used in DID models might not perform well when there are few treated groups and errors are heteroskedastic. In particular, we show that when there is variation in the number of observations per group, inference methods designed to work when there are few treated groups tend to (under-) over-reject the null hypothesis when the treated groups are (large) small relative to the control groups. This happens because larger groups tend to have lower variance, generating heteroskedasticity in the group x time aggregate DID model. We provide evidence from Monte Carlo simulations and from placebo DID regressions with the American Community Survey (ACS) and the Current Population Survey (CPS) datasets to show that this problem is relevant even in datasets with large numbers of observations per group. We then derive an alternative inference method that provides accurate hypothesis testing in situations where there are few treated groups (or even just one) and many control groups in the presence of heteroskedasticity. Our method assumes that we know how the heteroskedasticity is generated, which is the case when it is generated by variation in the number of observations per group. With many pre-treatment periods, we show that this assumption can be relaxed. Instead, we provide an alternative application of our method that relies on assumptions about stationarity and convergence of the moments of the time series. Finally, we consider two recent alternatives to DID when there are many pre-treatment groups. We extend our inference method to linear factor models when there are few treated groups. We also propose a permutation test for the synthetic control estimator that provided a better heteroskedasticity correction in our simulations than the test suggested by Abadie et al. (2010).
Resumo:
This Thesis presents the elaboration of a methodological propose for the development of an intelligent system, able to automatically achieve the effective porosity, in sedimentary layers, from a data bank built with information from the Ground Penetrating Radar GPR. The intelligent system was built to model the relation between the porosity (response variable) and the electromagnetic attribute from the GPR (explicative variables). Using it, the porosity was estimated using the artificial neural network (Multilayer Perceptron MLP) and the multiple linear regression. The data from the response variable and from the explicative variables were achieved in laboratory and in GPR surveys outlined in controlled sites, on site and in laboratory. The proposed intelligent system has the capacity of estimating the porosity from any available data bank, which has the same variables used in this Thesis. The architecture of the neural network used can be modified according to the existing necessity, adapting to the available data bank. The use of the multiple linear regression model allowed the identification and quantification of the influence (level of effect) from each explicative variable in the estimation of the porosity. The proposed methodology can revolutionize the use of the GPR, not only for the imaging of the sedimentary geometry and faces, but mainly for the automatically achievement of the porosity one of the most important parameters for the characterization of reservoir rocks (from petroleum or water)
Resumo:
Introduction: Mouth cancer is classified as having one of the ten highest cancer incidences in the world. In Brazil, the incidence and mortality rates of oral cancer are among the highest in the world. Intraoral cancer (tongue, gum, floor of the mouth, and other non-specified parts of the mouth), the accumulated survival rate after five years is less than 50%. Objectives: Estimate the accumulated survival probability after five years and adjust the Cox regression model for mouth and oropharyngeal cancers, according to age range, sex, morphology, and location, for the city of Natal. Describe the mortality and incidence coefficients of oral and oropharyngeal cancer and their tendencies in the city of Natal, between 1980 and 2001 and between 1997 and 2001, respectively. Methods: Survival data of patients registered between 1997 and 2001 was obtained from the Population-based Cancer Record of Natal. Differences between the survival curves were tested using the log-rank test. The Cox proportional risk model was used to estimate risk ratios. The simple linear regression model was used for tendency analyses of the mortality and incidence coefficients. Results: The probability after five years was 22.9%. The patients with undifferentiated malignant neoplasia were 4.7 times more at risk of dying than those with epidermoid carcinoma, whereas the patients with oropharyngeal cancer had 2.0 times more at risk of dying than those with mouth cancer. The mouth cancer mortality and incidence coefficients for Natal were 4.3 and 2.9 per 100 000 inhabitants, respectively. The oropharyngeal cancer mortality and incidence coefficients were, respectively, 1.1 and 0.7 per 100 000 87 inhabitants. Conclusions: A low survival rate after five years was identified. Patients with oropharyngeal cancer had a greater risk of dying, independent of the factors considered in this study. Also independent of other factors, undifferentiated malignant neoplasia posed a greater risk of death. The magnitudes of the incidence coefficients found are not considered elevated, whereas the magnitudes of the mortality coefficients are high
Resumo:
The aim of this research was to obtain a mathematical equation to estimate the leaf area of Ageratum conyzoides based on linear measures of its leaf blade. Correlation studies were done using real leaf area (Sf), leaf length (C) and the maximum leaf width (L), in about 200 leaf blades. The evaluated statistic models were: linear Y = a + bx; simple linear Y = bx; geometric Y = ax(b); and exponential Y = ab(x). The evaluated linear, exponential and geometric models can be used in the billygoat weed leaf area estimation. In the practical sense, the simple linear regression model is suggested using the C*L multiplication product and taking the linear coefficient equal to zero, because it showed weak-alteration on sum of squares error and satisfactory residual analysis. Thus, an estimate of A conyzoides leaf area can be obtained using the equation Sf = 0.6789*(C*L), with a determination coefficient of 0.8630.