480 resultados para ligation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND ; AIMS: Integrin alphavbeta6 is highly expressed on certain activated epithelia, where it mediates attachment to fibronectin and serves as coreceptor for the activation of latent transforming growth factor (TGF)-beta1. Because its role in liver fibrosis is unknown, we studied alphavbeta6 function in vitro and explored the antifibrotic potential of the specific alphavbeta6 antagonist EMD527040. METHODS: Experimental liver fibrosis was studied in rats after bile duct ligation (BDL) and in Mdr2(abcb4)(-/-) mice. Different doses of EMD527040 were given to rats from week 2 to 6 after BDL and to Mdr2(-/-) mice from week 4 to 8. Liver collagen was quantified, and expression of alphavbeta6 and fibrosis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. alphavbeta6-expressing cells, bile duct proliferation, and apoptosis were assessed histologically. The effect of EMD527040 on cholangiocyte adhesion, proliferation, apoptosis, and TGF-beta1 activation was studied in vitro. RESULTS: alphavbeta6 was highly expressed on proliferating bile duct epithelia in fibrosis, with 100-fold increased transcript levels in advanced fibrosis. EMD527040 attenuated bile ductular proliferation and peribiliary collagen deposition by 40%-50%, induced down-regulation of fibrogenic and up-regulation of fibrolytic genes, and improved liver architecture and function. In vitro alphavbeta6 inhibition reduced activated cholangiocyte proliferation, their adhesion to fibronectin, and endogenous activation of TGF-beta1 by 50% but did not affect bile duct apoptosis. CONCLUSIONS: Integrin alphavbeta6 is strongly up-regulated in proliferating bile duct epithelia and drives fibrogenesis via adhesion to fibronectin and auto/paracrine TGF-beta1 activation. Pharmacologic inhibition of alphavbeta6 potently inhibits the progression of primary and secondary biliary fibrosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND/AIMS: The integrin alphavbeta6 promotes proliferation of specialized epithelia and acts as a receptor for the activation of latent TGFbeta1. We studied alphavbeta6 expression in experimental and human liver fibrosis and the potential of its pharmacological inhibition for treatment of hepatic fibrosis. METHODS: alphavbeta6 expression was studied by quantitative PCR and immunohistochemistry in rats with cirrhosis due to bile duct ligation (BDL), administration of thioacetamide (TAA), in Mdr2(Abcb4)(-/-) mice with spontaneous biliary fibrosis, and in livers of patients with chronic hepatitis C (n=79) and end-stage liver disease due to various etiologies (n=18). The effect of a selective alphavbeta6 inhibitor was evaluated in Mdr2(Abcb4)(-/-) mice with ongoing fibrogenesis. RESULTS: Integrin beta6 mRNA increased with fibrosis stage in hepatitis C and was upregulated between 25- and 100-fold in TAA- and BDL-induced cirrhosis, in Mdr2(Abcb4)(-/-) mice and in human end-stage liver disease. alphavbeta6 protein was absent in normal livers and expressed de novo on (activated) bile duct epithelia and transitional hepatocytes. A single dose of the alphavbeta6 inhibitor injected into Mdr2(Abcb4)(-/-) mice significantly induced profibrolytic matrix metalloproteinases (MMP)-8 and -9 after 3 h, with a corresponding increase in extracellular matrix-degrading activities. In parallel profibrogenic transcripts (procollagen alpha1(I), TGFbeta2, and MMP-2) showed a trend of downregulation. CONCLUSIONS: (1) Integrin alphavbeta6 is induced de novo in rodent and human liver fibrosis, where it is expressed on activated bile duct epithelia and (transitional) hepatocytes during fibrosis progression. (2) In vivo a single dose of a small molecule alphavbeta6 inhibitor induced antifibrogenic and profibrolytic genes and activities, suggesting alphavbeta6 is a unique target for treatment of liver fibrosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Anatomic reduction and stable fixation by means of tissue- preserving surgical approaches. INDICATIONS Displaced acetabular fractures. Surgical hip dislocation approach with larger displacement of the posterior column in comparison to the anterior column, transtectal fractures, additional intraarticular fragments, marginal impaction. Stoppa approach with larger displacement of the anterior column in comparison to the posterior column. A combined approach might be necessary with difficult reduction. CONTRAINDICATIONS Fractures > 15 days (then ilioinguinal or extended iliofemoral approaches). Suprapubic catheters and abdominal problems (e.g., previous laparotomy due to visceral injuries) with Stoppa approach (then switch to classic ilioinguinal approach). SURGICAL TECHNIQUE: Surgical hip dislocation: lateral decubitus position. Straight lateral incision centered over the greater trochanter. Entering of the Gibson interval. Digastric trochanteric osteotomy with protection of the medial circumflex femoral artery. Opening of the interval between the piriformis and the gluteus minimus muscle. Z-shaped capsulotomy. Dislocation of the femoral head. Reduction and fixation of the posterior column with plate and screws. Fixation of the anterior column with a lag screw in direction of the superior pubic ramus. Stoppa approach: supine position. Incision according to Pfannenstiel. Longitudinal splitting of the anterior portion of the rectus sheet and the rectus abdominis muscle. Blunt dissection of the space of Retzius. Ligation of the corona mortis, if present. Blunt dissection of the quadrilateral plate and the anterior column. Reduction of the anterior column and fixation with a reconstruction plate. Fixation of the posterior column with lag screws. If necessary, the first window of the ilioinguinal approach can be used for reduction and fixation of the posterior column. POSTOPERATIVE MANAGEMENT: During hospital stay, intensive mobilization of the hip joint using a continuous passive motion machine with a maximum flexion of 90 degrees . No active abduction and passive adduction over the body's midline, if a surgical dislocation was performed. Maximum weight bearing 10-15 kg for 8 weeks. Then, first clinical and radiographic follow-up. Deep venous thrombosis prophylaxis for 8 weeks postoperatively. RESULTS: 17 patients with a mean follow-up of 3.2 years. Ten patients were operated via surgical hip dislocation, two patients with a Stoppa approach, and five using a combined or alternative approach. Anatomic reduction was achieved in ten of the twelve patients (83%) without primary total hip arthroplasty. Mean operation time 3.3 h for surgical hip dislocation and 4.2 h for the Stoppa approach. Complications comprised one delayed trochanteric union, one heterotopic ossification, and one loss of reduction. There were no cases of avascular necrosis. In two patients, a total hip arthroplasty was performed due to the development of secondary hip osteoarthritis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sialic-acid-binding immunoglobulin-like lectin (Siglec) 9 mediates death signals in neutrophils. The objective of this study was to determine the heterogeneity of neutrophil death responses in septic shock patients and to analyze whether these ex vivo data are related to the severity and outcome of septic shock. In this prospective cohort study, blood samples of patients with septic shock (n = 26) in a medical-surgical intensive care unit (ICU) were taken within 24 h of starting the treatment of septic shock (phase A), after circulatory stabilization (phase B), and 10 days after admission or at ICU discharge if earlier (phase C). Neutrophil death was quantified in the presence and absence of an agonistic anti-Siglec-9 antibody after 24 h ex vivo. In phase A, two distinct patterns of Siglec-9-mediated neutrophil death were observed: resistance to neutrophil death (n = 14; Siglec-9 nonresponders) and increased neutrophil death (n = 12; Siglec-9 responders) after Siglec-9 ligation compared with neutrophils from normal donors. Experiments using a pharmacological pan-caspase-inhibitor provided evidence for caspase-independent neutrophil death in Siglec-9 responders upon Siglec-9 ligation. There were no differences between Siglec-9 responders and nonresponders in length of ICU or hospital stay of survivors or severity of organ dysfunction. Taken together, septic shock patients exhibit different ex vivo death responses of blood neutrophils after Siglec-9 ligation early in shock. Both the resistance and the increased susceptibility to Siglec-9-mediated neutrophil death tend to normalize within 72 h after shock. Further studies are required to understand the role of Siglec-9-mediated neutrophil death in septic shock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vitronectin receptor integrin alphavbeta3 promotes angiogenesis by mediating migration and proliferation of endothelial cells, but also drives fibrogenic activation of hepatic stellate cells (HSCs) in vitro. Expecting antifibrotic synergism, we studied the effect of alphavbeta3 inhibition in two in vivo models of liver fibrogenesis. Liver fibrosis was induced in rats by way of bile duct ligation (BDL) for 6 weeks or thioacetamide (TAA) injections for 12 weeks. A specific alphavbeta3 (alphavbeta5) inhibitor (Cilengitide) was given intraperitoneally twice daily at 15 mg/kg during BDL or after TAA administration. Liver collagen was determined as hydroxyproline, and gene expression was quantified by way of quantitative polymerase chain reaction. Liver angiogenesis, macrophage infiltration, and hypoxia were assessed by way of CD31, CD68 and hypoxia-inducible factor-1alpha immunostaining. Cilengitide decreased overall vessel formation. This was significant in portal areas of BDL and septal areas of TAA fibrotic rats and was associated with a significant increase of liver collagen by 31% (BDL) and 27% (TAA), and up-regulation of profibrogenic genes and matrix metalloproteinase-13. Treatment increased gamma glutamyl transpeptidase in both models, while other serum markers remained unchanged. alphavbeta3 inhibition resulted in mild liver hypoxia, as evidenced by up-regulation of hypoxia-inducible genes. Liver infiltration by macrophages/Kupffer cells was not affected, although increases in tumor necrosis factor alpha, interleukin-18, and cyclooxygenase-2 messenger RNA indicated modest macrophage activation. CONCLUSION: Specific inhibition of integrin alphavbeta3 (alphavbeta5) in vivo decreased angiogenesis but worsened biliary (BDL) and septal (TAA) fibrosis, despite its antifibrogenic effect on HSCs in vitro. Angiogenesis inhibitors should be used with caution in patients with hepatic fibrosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the rapid increase in approaches to pro- or anti-angiogenic therapy, new and effective methodologies for administration of cell-bound growth factors will be required. We sought to develop the natural hydrogel matrix fibrin as platform for extensive interactions and continuous signaling by the vascular morphogen ephrin-B2 that normally resides in the plasma membrane and requires multivalent presentation for ligation and activation of Eph receptors on apposing endothelial cell surfaces. Using fibrin and protein engineering technology to induce multivalent ligand presentation, a recombinant mutant ephrin-B2 receptor binding domain was covalently coupled to fibrin networks at variably high densities. The ability of fibrin-bound ephrin-B2 to act as ligand for endothelial cells was preserved, as demonstrated by a concomitant, dose-dependent increase of endothelial cell binding to engineered ephrin-B2-fibrin substrates in vitro. The therapeutic relevance of ephrin-B2-fibrin implant matrices was demonstrated by a local angiogenic response in the chick embryo chorioallontoic membrane evoked by the local and prolonged presentation of matrix-bound ephrin-B2 to tissue adjacing the implant. This new knowledge on biomimetic fibrin vehicles for precise local delivery of membrane-bound growth factor signals may help to elucidate specific biological growth factor function, and serve as starting point for development of new treatment strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to assess the effect of bracket type on the labiopalatal forces and moments generated in the sagittal plane. Incognito™ lingual brackets (3M Unitek), STb™ lingual brackets (Light Lingual System; ORMCO), and conventional 0.018 inch slot brackets (Gemini; 3M Unitek) were bonded on three identical maxillary acrylic resin models, with a palatally displaced right lateral incisor. The transfer trays for the indirect bonding of the lingual brackets were constructed in certified laboratories. Each model was mounted on the orthodontic measurement and simulation system and ten 0.013 inch CuNiTi wires were used for each bracket type. The wire was ligated with elastomerics and each measurement was repeated once after re-ligation. The labiopalatal forces and the moments in the sagittal plane were recorded on the right lateral incisor. One-way analysis of variance and post hoc Scheffe pairwise comparisons were used to assess the effect on bracket type on the generated forces and moments. The magnitude of forces ranged from 1.62, 1.27, and 1.81 N for the STb, conventional, and Incognito brackets, respectively; the corresponding moments were 2.01, 1.45, and 2.19 N mm, respectively. Bracket type was a significant predictor of the generated forces (P < 0.001) and moments (P < 0.001). The produced forces were different among all three bracket types, whereas the generated moments differed between conventional and lingual brackets but not between lingual brackets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies from our lab have shown that decreasing myocardial G protein-coupled receptor kinase 2 (GRK2) activity and expression can prevent heart failure progression after myocardial infarction. Since GRK2 appears to also act as a pro-death kinase in myocytes, we investigated the effect of cardiomyocyte-specific GRK2 ablation on the acute response to cardiac ischemia/reperfusion (I/R) injury. To do this we utilized two independent lines of GRK2 knockout (KO) mice where the GRK2 gene was deleted in only cardiomyocytes either constitutively at birth or in an inducible manner that occurred in adult mice prior to I/R. These GRK2 KO mice and appropriate control mice were subjected to a sham procedure or 30 min of myocardial ischemia via coronary artery ligation followed by 24 hrs reperfusion. Echocardiography and hemodynamic measurements showed significantly improved post-I/R cardiac function in both GRK2 KO lines, which correlated with smaller infarct sizes in GRK2 KO mice compared to controls. Moreover, there was significantly less TUNEL positive myocytes, less caspase-3, and -9 but not caspase-8 activities in GRK2 KO mice compared to control mice after I/R injury. Of note, we found that lowering cardiac GRK2 expression was associated with significantly lower cytosolic cytochrome C levels in both lines of GRK2 KO mice after I/R compared to corresponding control animals. Mechanistically, the anti-apoptotic effects of lowering GRK2 expression were accompanied by increased levels of Bcl-2, Bcl-xl, and increased activation of Akt after I/R injury. These findings were reproduced in vitro in cultured cardiomyocytes and GRK2 mRNA silencing. Therefore, lowering GRK2 expression in cardiomyocytes limits I/R-induced injury and improves post-ischemia recovery by decreasing myocyte apoptosis at least partially via Akt/Bcl-2 mediated mitochondrial protection and implicates mitochondrial-dependent actions, solidifying GRK2 as a pro-death kinase in the heart.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM As technological interventions treating acute myocardial infarction (MI) improve, post-ischemic heart failure increasingly threatens patient health. The aim of the current study was to test whether FADD could be a potential target of gene therapy in the treatment of heart failure. METHODS Cardiomyocyte-specific FADD knockout mice along with non-transgenic littermates (NLC) were subjected to 30 minutes myocardial ischemia followed by 7 days of reperfusion or 6 weeks of permanent myocardial ischemia via the ligation of left main descending coronary artery. Cardiac function were evaluated by echocardiography and left ventricular (LV) catheterization and cardiomyocyte death was measured by Evans blue-TTC staining, TUNEL staining, and caspase-3, -8, and -9 activities. In vitro, H9C2 cells transfected with ether scramble siRNA or FADD siRNA were stressed with chelerythrin for 30 min and cleaved caspase-3 was assessed. RESULTS FADD expression was significantly decreased in FADD knockout mice compared to NLC. Ischemia/reperfusion (I/R) upregulated FADD expression in NLC mice, but not in FADD knockout mice at the early time. FADD deletion significantly attenuated I/R-induced cardiac dysfunction, decreased myocardial necrosis, and inhibited cardiomyocyte apoptosis. Furthermore, in 6 weeks long term permanent ischemia model, FADD deletion significantly reduced the infarct size (from 41.20 ± 3.90% in NLC to 26.83 ± 4.17% in FADD deletion), attenuated myocardial remodeling, improved cardiac function and improved survival. In vitro, FADD knockdown significantly reduced chelerythrin-induced the level of cleaved caspase-3. CONCLUSION Taken together, our results suggest FADD plays a critical role in post-ischemic heart failure. Inhibition of FADD retards heart failure progression. Our data supports the further investigation of FADD as a potential target for genetic manipulation in the treatment of heart failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of mesenchymal stromal cells (MSCs) for treatment of bacterial infections, including systemic processes like sepsis, is an evolving field of investigation. This study was designed to investigate the potential use of MSCs, harvested from compact bone, and their interactions with the innate immune system, during polymicrobial sepsis induced by cecal ligation and puncture (CLP). We also wanted to elucidate the role of endogenous heme oxygenase (HO)-1 in MSCs during a systemic bacterial infection. MSCs harvested from the bones of HO-1 deficient (-/-) and wild-type (+/+) mice improved the survival of HO-1(-/-) and HO-1(+/+) recipient mice when administered after the onset of polymicrobial sepsis induced by CLP, compared with the administration of fibroblast control cells. The MSCs, originating from compact bone in mice, enhanced the ability of neutrophils to phagocytize bacteria in vitro and in vivo and to promote bacterial clearance in the peritoneum and blood after CLP. Moreover, after depleting neutrophils in recipient mice, the beneficial effects of MSCs were entirely lost, demonstrating the importance of neutrophils for this MSC response. MSCs also decreased multiple organ injury in susceptible HO-1(-/-) mice, when administered after the onset of sepsis. Taken together, these data demonstrate that the beneficial effects of treatment with MSCs after the onset of polymicrobial sepsis is not dependent on endogenous HO-1 expression, and that neutrophils are crucial for this therapeutic response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Mortality of patients with acute liver failure (ALF) is still unacceptably high. Available liver support systems are still of limited success at improving survival. A new type of albumin dialysis, the Hepa Wash® system, was newly introduced. We evaluated the new liver support system as well as the Molecular Adsorbent Recycling System (MARS) in an ischemic porcine model of ALF. METHODS In the first study animals were randomly allocated to control (n=5) and Hepa Wash (n=6) groups. In a further pilot study, two animals were treated with the MARS-system. All animals received the same medical and surgical procedures. An intraparenchymal intracranial pressure was inserted. Hemodynamic monitoring and goal-directed fluid therapy using the PiCCO system was done. Animals underwent functional end-to-side portacaval shunt and ligation of hepatic arteries. Treatment with albumin dialysis was started after fall of cerebral perfusion pressure to 45 mmHg and continued for 8 h. RESULTS All animals in the Hepa Wash group survived the 13-hour observation period, except for one that died after stopping treatment. Four of the control animals died within this period (p=0.03). Hepa Wash significantly reduced impairment of cerebral perfusion pressure (23±2 vs. 10±3 mmHg, p=0.006) and mean arterial pressure (37±1 vs. 24±2 mmHg, p=0.006) but had no effect on intracranial pressure (14±1 vs. 15±1 mmHg, p=0.72). Hepa Wash also enhanced cardiac index (4.94±0.32 vs. 3.36±0.25 l/min/m2, p=0.006) and renal function (urine production, 1850 ± 570 vs. 420 ± 180 ml, p=0.045) and eliminated water soluble (creatinine, 1.3±0.2 vs. 3.2±0.3 mg/dl, p=0.01; ammonia 562±124 vs. 1382±92 μg/dl, p=0.006) and protein-bound toxins (nitrate/nitrite 5.54±1.57 vs. 49.82±13.27 μmol/l, p=0.01). No adverse events that could be attributed to the Hepa Wash treatment were observed. CONCLUSIONS Hepa Wash was a safe procedure and improved multiorgan system failure in pigs with ALF. The survival benefit could be the result of ameliorating different organ functions in association with the detoxification capacity of water soluble and protein-bound toxins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell penetrating peptides (CPP) are peptides of 10 to 30 residues derived from natural translocating proteins. Multivalency is known to enhance cellular uptake for the Tat peptide and closely related polycationic sequences. To test whether multivalency effects on cellular uptake might also occur with other CPP types, we prepared multivalent versions of the strongly cationic Tat, the amphipathic sequences Antp, pVEC and TP10, and the polyproline helix SAP by convergent thioether ligation of the linear CPP onto multivalent scaffolds, and evaluated their uptake in HeLa and CHO cells, intracellular localization, cytotoxicity and hemolysis. While multivalency did not increase the cellular uptake of pVEC or SAP, multivalency effects on uptake comparable to Tat were observed with TP10 and Antp, which are attributable to their polycationic nature. The efficient synthetic protocol for these divalent CPP and their localization in the cytoplasm suggest that CPP might be useful for application in cargo delivery into cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuberous sclerosis complex (TSC) is a genetic disorder with pleiotropic manifestations caused by heterozygous mutations in either TSC1 or TSC2. One of the less investigated complications of TSC is the formation of aneurysms of the descending aorta, which are characterized on pathologic examination by smooth muscle cell (SMC) proliferation in the aortic media. SMCs were explanted from Tsc2(+/-) mice to investigate the pathogenesis of aortic aneurysms caused by TSC2 mutations. Tsc2(+/-) SMCs demonstrated increased phosphorylation of mammalian target of rapamycin (mTOR), S6 and p70S6K and increased proliferation rates compared with wild-type (WT) SMCs. Tsc2(+/-) SMCs also had reduced expression of SMC contractile proteins compared with WT SMCs. An inhibitor of mTOR signaling, rapamycin, decreased SMC proliferation and increased contractile protein expression in the Tsc2(+/-) SMCs to levels similar to WT SMCs. Exposure to alpha-elastin fragments also decreased proliferation of Tsc2(+/-) SMCs and increased levels of p27(kip1), but failed to increase expression of contractile proteins. In response to artery injury using a carotid artery ligation model, Tsc2(+/-) mice significantly increased neointima formation compared with the control mice, and the neointima formation was inhibited by treatment with rapamycin. These results demonstrate that Tsc2 haploinsufficiency in SMCs increases proliferation and decreases contractile protein expression and suggest that the increased proliferative potential of the mutant cells may be suppressed in vivo by interaction with elastin. These findings provide insights into the molecular pathogenesis of aortic disease in TSC patients and identify a potential therapeutic target for treatment of this complication of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells infected with MuSVts110 express a viral RNA which contains an inherent conditional defect in RNA splicing. It has been shown previously that splicing of the MuSVts110 primary transcript is essential to morphological transformation of 6m2 cells in vitro. A growth temperature of 33$\sp\circ$C is permissive for viral RNA splicing,and, consequently, 6m2 cells appear morphologically transformed at this temperature. However, 6m2 cells appear phenotypically normal when incubated at 39$\sp\circ$C, the non-permissive temperature for viral RNA splicing.^ After a shift from 39$\sp\circ$C to 33$\sp\circ$C, the coordinate splicing of previously synthesized and newly transcribed MuSVts110 RNA was achieved. By S1 nuclease analysis of total RNA isolated at various times, 5$\sp\prime$ splice site cleavage of the MuSVts110 transcript appeared to occur 60 minutes after the shift to 33$\sp\circ$C, and 30 minutes prior to detectable exon ligation. In addition, consistent with the permissive temperatures and the kinetic timeframe of viral RNA splicing after a shift to 33$\sp\circ$C, four temperature sensitive blockades to primer extension were identified 26-75 bases upstream of the 3$\sp\prime$ splice site. These blockades likely reflect four branchpoint sequences utilized in the formation of MuSVts110 lariat splicing-intermediates.^ The 54-5A4 cell line is a spontaneous revertant of 6m2 cells and appears transformed at all growth temperatures. Primer extension sequence analysis has shown that a five base deletion occurred at the 3$\sp\prime$ splice site in MuSVts110 RNA allowing the expression of a viral transforming protein in 54-5A4 in the absence of RNA splicing, whereas in the parental 6m2 cell line, a splicing event is necessary to generate a similar transforming protein. As a consequence of this deletion, splicing cannot occur and the formation of the four MuSVts110 branched-intermediates were not observed at any temperature in 54-5A4 cells. However, 5$\sp\prime$ splice site cleavage was still detected at 33$\sp\circ$C.^ Finally, we have investigated the role of the 1488 bp deletion which occurred in the generation of MuSVts110 in the activation of temperature sensitive viral RNA splicing. This deletion appears solely responsible for splice site activation. Whether intron size is the crucial factor in MuSVts110 RNA splicing or whether inhibitory sequences were removed by the deletion is currently unknown. (Abstract shortened with permission of author.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

9-$\beta$-D-arabinofuranosyl-2-fluoroadenine (F-ara-A) is an analogue of adenosine and 2$\sp\prime$-deoxyadenosine with potent antitumor activity both in vitro and in vivo. The mechanism of action of F-ara-A was evaluated both in whole cells and in experimental systems with purified enzymes. F-ara-A was converted to its 5$\sp\prime$-triphosphate F-ara-ATP in cells and then incorporated into DNA in a self-limiting manner. About 98% of the incorporated F-ara-AMP residues were located at the 3$\sp\prime$-termini of DNA strands, suggesting a chain termination property of this compound. DNA synthesis in CEM cells was inhibited by F-ara-A treatment with an IC$\sb{50}$ value of 1 $\mu$M. Cells were not able to restore the normal level of DNA synthesis even after being cultured in drug-free medium for 40 h. A DNA primer extension assay with M13mp18(+) single-stranded DNA template using purified human DNA polymerases $\alpha$ and further revealed that F-ara-ATP competed with dATP for incorporation into the A sites of the elongating DNA strands. The incorporation of F-ara-AMP into DNA resulted in a termination of DNA synthesis at the incorporated A sites. Pol $\alpha$ and $\delta$ were not able to efficiently extend the DNA primer with F-ara-AMP at its 3$\sp\prime$-end. Furthermore, the presence of F-ara-AMP at the 3$\sp\prime$-end of an oligodeoxyribonucleotide impaired its ligation with an adjacent DNA fragment by human and T4 ligases. Human DNA polymerase $\alpha$ incorporated more F-ara-AMP into DNA than polymerase $\delta$ and was more sensitive to the inhibition by F-ara-ATP, suggesting that polymerase $\alpha$ may be a preferred target for this analogue. On the other hand, DNA-dependent nucleotide turnover experiments and sequencing gel analysis demonstrated that DNA polymerase $\delta$ was able to remove the incorporated F-ara-AMP residue from the 3$\sp\prime$-end of the DNA strand with its 3$\sp\prime$-5$\sp\prime$ exonuclease activity in vitro, subsequently permitting further elongation of the DNA strand.^ The incorporation of F-ara-AMP into DNA was linearly correlated both with the inhibition of DNA synthesis and with the loss of clonogenicity. Termination of DNA synthesis and deletion of genetic material resulted from F-ara-AMP incorporation may be the mechanism responsible for cytotoxicity of F-ara-A. (Abstract shortened with permission of author.) ^