960 resultados para leaf epidermal
Resumo:
Gene gun immunization, i.e., bombardment of skin with DNA-coated particles, is an efficient method for the administration of DNA vaccines. Direct transfection of APC or cross-presentation of exogenous Ag acquired from transfected nonimmune cells enables MHC-I-restricted activation of CD8(+) T cells. Additionally, MHC-II-restricted presentation of exogenous Ag activates CD4(+) Th cells. Being the principal APC in the epidermis, Langerhans cells (LC) seem ideal candidates to accomplish these functions. However, the dependence on LC of gene gun-induced immune reactions has not yet been demonstrated directly. This was primarily hampered by difficulties to discriminate the contributions of LC from those of other dermal dendritic cells. To address this problem, we have used Langerin-diphtheria toxin receptor knockin mice that allow for selective inducible ablation of LC. LC deficiency, even over the entire duration of experiments, did not affect any of the gene gun-induced immune functions examined, including proliferation of CD4(+) and CD8(+) T cells, IFN-gamma secretion by spleen cells, Ab production, CTL activity, and development of protective antitumor immunity.
Resumo:
Our previous studies have shown that overexpression of beta1,4-galactosyltransferase1 (beta1,4GT1) leads to increased apoptosis induced by cycloheximide (CHX) in SMMC-7721 human hepatocarcinoma cells. However, the role of beta1,4GT1 in apoptosis remains unclear. Here we demonstrated that cell surface beta1,4GT1 inhibited the autophosphorylation of epidermal growth factor receptor (EGFR) especially at Try 1068. The phosphorylation of protein kinase B (PKB/Akt) and extracellular signal-regulated protein kinase1/2 (ERK1/2), which are downstream molecules of EGFR, were also reduced in cell surface beta1,4GT1-overexpressing cells. Furthermore, the translocations of Bad and Bax that are regulated by PKB/Akt and ERK1/2 were also increased in these cells. As a result, the release of cytochrome c from mitochondria to cytosol was increased and caspase-3 was activated. In contrast, RNAi-mediated knockdown of beta1,4GT1 increased the autophosphorylation of EGFR. These results demonstrated that cell surface beta1,4GT1 may negatively regulate cell survival possibly through inhibiting and modulating EGFR signaling pathway.
Resumo:
The heterotrimeric kinesin-II motor in Caenorhabditis elegans consists of KLP-20, KLP-11, and KAP-1 subunits and broadly functions in cellular transport for the development of biological structures including cilia and axons. The results of this paper support the ubiquitous and necessary role kinesin-II motors have in development, particularly the KLP-20 microtubule-associating subunit. Mutations in klp-20 result in a variable abnormal (vab) phenotype characterized by observable epidermal defects, although the role of this gene in development and the mechanism by which the vab phenotype is produced is largely unknown. The vab phenotype is highly penetrant in the first larval stage (L1) of C. elegans, which supports that klp-20 functions in early development. Ciliated amphid sensory neurons can be stained with a fluorescent dye, DiI, to simultaneously test cilia structure and function, as well as the morphology of the amphid sensory organ. Reduced dye uptake in klp-20 mutant L1s suggests that the microtubule-based cilia are under-developed as a result of defective kinesin-II function. Consistent observations of the PLM mechanosensory neuron using the zdIs5 reporter suggest that klp-20 has an essential role in neuron development, as mutations to klp-20 result in under-developed PLM axons. Qualitative observations suggest there may be an interaction between the development of the overlying epidermis and the underlying nervous system, as a more severe vab phenotype is observed simultaneously with reduced dye uptake, and hence amphid sensory cilia under-development. Furthermore, a more severe vab phenotype manifested as large bumps on the posterior epidermis appears to be spatially correlated with PLM defects. The results presented and discussed in this paper suggest that KLP-20 has a necessary role in neurodevelopment and epidermal morphogenesis in C. elegans during embryogenesis.
Resumo:
Langerhans cells (LCs) constitute a subset of dendritic cells (DCs) that express the lectin langerin and that reside in their immature state in epidermis. Paradoxically, in mice permitting diphtheria toxin (DT)-mediated ablation of LCs, epidermal LCs reappeared with kinetics that lagged behind that of their putative progeny found in lymph nodes (LNs). Using bone marrow (BM) chimeras, we showed that a major fraction of the langerin(+), skin-derived DCs found in LNs originates from a developmental pathway that is independent from that of epidermal LCs. This pathway, the existence of which was unexpected, originates in the dermis and gives rise to langerin(+) dermal DCs (DDCs) that should not be confused with epidermal LCs en route to LNs. It explains that after DT treatment, some langerin(+), skin-derived DCs reappear in LNs long before LC-derived DCs. Using CD45 expression and BrdU-labeling kinetics, both LCs and langerin(+) DDCs were found to coexist in wild-type mice. Moreover, DT-mediated ablation of epidermal LCs opened otherwise filled niches and permitted repopulation of adult noninflammatory epidermis with BM-derived LCs. Our results stress that the langerin(+) DC network is more complex than originally thought and have implications for the development of transcutaneous vaccines and the improvement of humanized mouse models.
Resumo:
The defensive strategy of amphibians against predator attack relies heavily on the secretion of noxious/toxic chemical cocktails from specialized skin granular glands. Bioactive peptides constitute a major component of secretions in many species and the most complex are produced by neotropical leaf frogs of the sub-family Phyllomedusinae. We recently reported that these skin secretions contain elements of both the granular gland peptidome and transcriptome and that polyadenylated mRNAs constituting the latter are protected from degradation by interactions with endogenous amphipathic peptides. This thus permits parallel amino acid sequencing of peptides and nucleic acid sequencing of cloned precursor transcripts from single lyophilized samples of secretion. Here we report that the protection afforded is sufficiently robust to permit transcriptome studies by cloning of full-length polyadenylated peptide precursor encoding mRNAs from libraries constructed using ambient temperature air-dried skin from recently deceased specimens as source material. The technique was sufficiently sensitive to permit the identification of cDNAs encoding antimicrobial peptides constituted by six different isoforms of phylloseptin and two dermaseptins. Also, for the first time, establishment of the nucleic acid and amino acid sequence of the precursor encoding the phyllomedusine frog skin bradykinin-related peptide, phyllokinin, from cloned cDNA, was achieved. These data unequivocally demonstrate that the granular gland transcriptome persists in air-dried amphibian skin—a finding that may have fundamental implications in the study of archived materials but also in the wider field of molecular biology.
Resumo:
The Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis) and the North American pickerel frog (Rana palustris) occupy different ecological niches on two different continents with no overlap in geographical distribution. R. palustris skin secretions contain a formidable array of antimicrobial peptides including homologs of brevinin-1, esculentin-1, esculentin-2, ranatuerin-2, a temporin and a family of peptides considered of unique structural attributes when isolated, palustrins 1–3. Here we describe the structures of mature peptides and precursors of eight putative antimicrobial peptides from the skin secretion of the Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis). Each peptide represents a structural homolog of respective peptide families isolated from R. palustris, including two peptides identical in primary structure to palustrin 1c and palustrin 3b. Additionally, two peptides were found to be structural homologs of ranatuerin 2B and ranatuerin 2P from the closely-related North American species, Rana berlandieri (the Rio Grande leopard frog) and Rana pipiens (the Northern leopard frog), respectively. Both palustrins and ranatuerins have hitherto been considered unique to North American ranid frogs. The use of primary structures of amphibian skin antimicrobial peptides is thus questionable as a taxonomic device or alternatively, the micro-evolution and/or ancestry of ranid frogs is more highly complex than previously thought.
Resumo:
By integrating systematic peptidome and transcriptome studies of the defensive skin secretion of the Central American red-eyed leaf frog, Agalychnis callidryas, we have identified novel members of three previously described antimicrobial peptide families, a 27-mer dermaseptin-related peptide (designated DRP-AC4), a 33-mer adenoregulin-related peptide (designated ARP-AC1) and most unusually, a 27-mer caerin-related peptide (designated CRP-AC1). While dermaseptin and adenoregulin were originally isolated from phyllomedusine leaf frogs, the caerins, until now. had only been described in Australian frogs of the genus, Litoria. Both the dermaseptin and adenoregulin were C-terminally amidated and lacked the C-terminal tripeptide of the biosynthetic precursor sequence. In contrast, the caerin-related peptide, unlike the majority of Litoria analogs. was not C-terminally amidated. The present data emphasize the need for structural characterization of mature peptides to ensure that unexpected precursor cleavages and/or post-translational modifications do not produce mature peptides that differ in structure to those predicted from cloned biosynthetic precursor cDNA. Additionally, systematic study of the secretory peptidome can produce unexpected results such as the CRP described here that may have phylogenetic implications. It is thus of the utmost importance in the functional evaluation of novel peptides that the primary structure of the mature peptide is unequivocally established - something that is often facilitated by cloning biosynthetic precursor cDNAs but obviously not reliable using such data alone. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Amphibian skin secretions represent a unique resource for the discovery of new bioactive peptides. Here we report the isolation, structural and functional characterization of a novel heptapeptide amide, DMSPPWHamide, from the defensive skin secretion of the Mexican giant leaf frog, Pachymedusa dacnicolor. This peptide is of unique primary structure and has been classified as a member of the rather heterogenous tryptophyllin-2 (T-2) family of amphibian skin peptides and named P. dacnicolor Tryptophyllin-2 (PdT-2) in accordance. PdT-2 is the first Type 2-tryptophyllin to possess discrete bioactivity. Both natural and synthetic replicates of the peptide were found to contract the smooth muscle of rat urinary bladder, the latter displaying an EC50 of 4 nM.