975 resultados para lead in soils
Resumo:
The thick weathering profiles of humid tropical areas are an important, yet generally neglected, source of information on landscape evolution. Six complete profiles of the weathering mantle were sampled by drilling on the three stepped levels of the Campos do Jordao Plateau, on the NW flank of the Continental Rift of Southeastern Brazil. Mineralogical and micromorphological analyses of drill core samples, complemented by geochemical interpretations and by previous data on the upper saprolite, indicate continuity of a general lateritic trend during the entire process of mantle formation. Lateritization phases of different intensity were defined and considered to reflect adjustment to changes in environmental conditions created by the gradual uplift of the plateau to its present position. Older and more superficial materials related to intense lateritic weathering are characterized by allitization with direct formation of gibbsite from silicates, probably related to tropical climates existing immediately before the formation of the continental rift, during the Paleogene, and also before any significant increase in altitude. Monosialitization phase with general kaolinitization and restricted indirect formation of gibbsite from silicates could be associated to less aggressive climates that followed the Neogene (Miocene?) accentuation of uplift rates along the continental rift. The changes produced by uplift in the tropical climate eventually favored the development of a podzolization trend in soils above 1800m. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
The controlled disposal of tannery sludge in agricultural soils is a viable alternative for recycling such waste; however, the impact of this practice on the arbuscular mycorrhizal fungi (AMF) communities is not well understood. We studied the effects of low-chromium tannery sludge amendment in soils on AMF spore density, species richness and diversity, and root colonization levels. Sludge was applied at four doses to an agricultural field in Rolandia, Parana state, Brazil. The sludge was left undisturbed on the soil surface and then the area was harrowed and planted with corn. The soil was sampled at four intervals and corn roots once within a year (2007/2008). AMF spore density was low (1 to 49 spores per 50 cm(3) of soil) and decreased as doses of tannery sludge increased. AMF root colonization was high (64%) and unaffected by tannery sludge. Eighteen AMF species belonging to six genera (Acaulospora, Glomus, Gigaspora, Scutellospora, Paraglomus, and Ambispora) were recorded. At the sludge doses of 9.0 and 22.6 Mg ha(-1), we observed a decrease in AMF species richness and diversity, and changes in their relative frequencies. Hierarchical grouping analysis showed that adding tannery waste to the soil altered AMF spore community in relation to the control, modifying the mycorrhizal status of soil and selectively favoring the sporulation of certain species.
Resumo:
Watson is a fully developed suburb of some 30 years in Canberra (the capital city of Australia), A plunge dip using arsenical pesticides for tick control was operated there between 1946 and 1960, Chemical investigations revealed that many soil samples obtained from the study area contained levels of arsenic exceeding the current health-based investigation levels of 100 mg kg(-1) set by the National Health and Medical Research Council in Australia, For the speciation study, nine composite samples of surface and sub-surface soils and a composite sample of rocks were selected. ICP-MS analysis showed that arsenic levels in these samples ranged from 32 to 1597 mg kg(-1), Chemical speciation of arsenic showed that the arsenite (trivalent) components were 0.32-56% in the soil and 44.8% in the rock composite samples. Using a rat model, the absolute bioavailability of these contaminated soils relative to As3+ or As5+ ranged from 1.02 to 9.87% and 0.26 to 2.98%, respectively, An attempt was made to develop a suitable leachate test as an index of bioavailability. However, the results indicated that there was no significant correlation between the bioavailability and leachates using neutral pH water or 1 M HCl. Our results indicate that speciation is highly significant for the interpretation of bioavailability and risk assessment data; the bioavailable fractions of arsenic in soils from Watson are small and therefore the health impact upon the environment and humans due to this element is limited.
Resumo:
Most soils contain preferential flow paths that can impact on solute mobility. Solutes can move rapidly down the preferential flow paths with high pore-water velocities, but can be held in the less permeable region of the soil matrix with low pore-water velocities, thereby reducing the efficiency of leaching. In this study, we conducted leaching experiments with interruption of the flow and drainage of the main flow paths to assess the efficiency of this type of leaching. We compared our experimental results to a simple analytical model, which predicts the influence of the variations in concentration gradients within a single spherical aggregate (SSA) surrounded by preferential flow paths on leaching. We used large (length: 300 mm, diameter: 216 mm) undisturbed field soil cores from two contrasting soil types. To carry out intermittent leaching experiments, the field soil cores were first saturated with tracer solution (CaBr2), and background solution (CaCl2) was applied to mimic a leaching event. The cores were then drained at 25- to 30-cm suction to empty the main flow paths to mimic a dry period during which solutes could redistribute within the undrained region. We also conducted continuous leaching experiments to assess the impact of the dry periods on the efficiency of leaching. The flow interruptions with drainage enhanced leaching by 10-20% for our soils, which was consistent with the model's prediction, given an optimised equivalent aggregate radius for each soil. This parameter quantifies the time scales that characterise diffusion within the undrained region of the soil, and allows us to calculate the duration of the leaching events and interruption periods that would lead to more efficient leaching. Application of these methodologies will aid development of strategies for improving management of chemicals in soils, needed in managing salts in soils, in improving fertiliser efficiency, and in reclaiming contaminated soils. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The environmental fate of polycyclic aromatic hydrocarbons (PAHs) in soils is motivated by their wide distribution, high persistence, and potentially deleterious effect on human health. Polycyclic aromatic hydrocarbons constitute the largest group of environmental contaminants released in the environment. Therefore, the potential biodegradation of these compounds is of vital importance. A biocarrier suitable for the colonization by micro-organisms for the purpose of purifying soil contaminated by polycyclic aromatic hydrocarbons was developed. The optimized composition of the biocarrier was polyvinyl alcohol (PVA) 10%, sodium alginate (SA) 0.5%, and powdered activated carbon (PAC) 5%. There was no observable cytotoxicity of biocarriers on immobilized cells and a viable cell population of 1.86 x 10(10) g(-1) was maintained for immobilized bacterium. Biocarriers made from chemical methods had a higher biodegradation but lower mechanical strengths. Immobilized bacterium Zoogloea sp. had an ideal capability of biodegradation for phenanthrene and pyrene over a relative wide concentration range. The study results showed that the biodegradation of phenanthrene and pyrene reached 87.0 and 75.4%, respectively, by using the optimal immobilized method of Zoogloea sp. cultivated in a sterilized soil. Immobilized Zoogloea sp. was found to be effective for biodegrading the soil contaminated with phenanthrene and pyrene. Even in natural (unsterilized) soil, the biodegradation of phenanthrene and pyrene using immobilized Zoogloea sp. reached 85.0 and 67.1%, respectively, after 168 h of cultivation, more than twice that achieved if the cells were not immobilized on the biocarrier. Therefore, the immobilization technology enhanced the competitive ability of introduced micro-organisms and represents an effective method for the biotreatment of soil contaminated with phenanthrene and pyrene.
Resumo:
Background Some children with juvenile idiopathic arthritis either do not respond, or are intolerant to, treatment with disease-modifying antirheumatic drugs, including anti-tumour necrosis factor (TNF) drugs. We aimed to assess the safety and efficacy of abatacept, a selective T-cell costimulation modulator, in children with juvenile idiopathic arthritis who had failed previous treatments. Methods We did a double-blind, randomised controlled withdrawal trial between February, 2004, and June, 2006. We enrolled 190 patients aged 6-17 years, from 45 centres, who had a history of active juvenile idiopathic arthritis; at least five active joints; and an inadequate response to, or intolerance to, at least one disease-modifying antirheumatic drug. All 190 patients were given 10 mg/kg of abatacept intravenously in the open-label period of 4 months. Of the 170 patients who completed this lead-in course, 47 did not respond to the treatment according to predefined American College of Rheumatology (ACR) paediatric criteria and were excluded. Of the patients who did respond to abatacept, arthritis, and 62 were randomly assigned to receive placebo at the same dose and timing. The primary endpoint was time to flare of arthritis. Flare was defined as worsening of 30% or more in at least three of six core variables, with at least 30% improvement in no more than one variable. We analysed all patients who were treated as per protocol. This trial is registered, number NCT00095173. Findings Flares of arthritis occurred in 33 of 62 (53%) patients who were given placebo and 12 of 60 (20%) abatacept patients during the double-blind treatment (p=0.0003). Median time to flare of arthritis was 6 months for patients given placebo (insufficient events to calculate IQR); insufficient events had occurred in the abatacept group for median time to flare to be assessed (p=0.0002). The risk of flare in patients who contined abatacept was less than a third of that for controls during that double-blind period (hazard ratio 0.31, 95% CI 0.16-0.95). During the double-blind period, the frequency of adverse events did not differ in the two treatment groups, Adverse events were recorded in 37 abatacept recipients (62%) and 34 (55%) placebo recipients (p=0.47); only two serious adverse events were reported, bouth in controls (p=0.50). Interpretation Selective modulation of T-cell costimulation with abatacept is a rational alternative treatment for children with juvenile idiopathic arthritis. Funding Bristol-Myers Squibb.
Resumo:
Objectives: This triple-blind, 2 x 2 crossover in situ study, was undertaken to verify whether the wear resistance of enamel and root dentine would be affected by bleaching with a 10% carbamide peroxide agent and a placebo agent. Methods: Thirty slabs of each. substrate (2 mm x 3 mm x 2 mm) were selected for each phase, after flattening and polishing procedures and microhardness test. After a 7-day lead-in period, one specimen of each substrate was randomly bonded on the facial surface of each one of 30 subject`s upper second premolars. The volunteers received instructions on how to perform toothbrushing and application of gel in the tray. Fifteen volunteers bleached their maxillary arch with a 10% carbamide peroxide bleaching agent for a 2-week period, while the remainders used a placebo agent. After a 1-week washout period, a new set of enamel and root dentine slabs were bonded to the premolars and volunteers were crossed over to the alternate agent for 14 days. The resistance of enamel and root dentine to wear following bleaching, toothbrushing and intraoral exposure was measured with a profilometer, using reference areas. Results: For enamel, ANOVA did not demonstrate significant difference between wear provided by placebo and bleaching agent (p = 0.3713), but higher wear depth was observed for bleached root dentine (p = 0.0346). Conclusions: While overnight bleaching caused no alteration in wear resistance of enamel, root dentine showed increased tissue loss. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To assess, by a crossover 2 x 2 in situ study, the speculated protective role of a sodium bicarbonate-containing toothpaste in controlling erosive lesions. Methods: Bovine enamel slabs were sterilized, and submitted to baseline Knoop microhardness measurements. After a 3-day lead-in period, 14 volunteers wore palatal acrylic appliances containing six enamel slabs (three on each side), for 4 consecutive days. On the first day, appliances with contained specimens were placed in the oral cavity to allow salivary pellicle formation. On the subsequent days, half of the enamel slabs were immersed extraorally in a lemonade-like soft drink for 90 seconds, twice daily. On both of these occasions, the appliance was dipped in toothpaste slurry of either a sodium bicarbonate-containing toothpaste or a regular counterpart for 60 seconds. Following a 3-day washout period, a new set of enamel slabs were mounted and the volunteers started the second period using the alternate dentifrice. Results: ANOVA (alpha = 0.05) showed no statistically significant difference between enamel treated with regular and sodium bicarbonate-based dentifrices, regardless of whether specimens were eroded or not (P=0.8430). Acid-challenged specimens revealed lower microhardness values than uneroded samples. (Am J Dent 2008;21:300-302).
Resumo:
A field experiment was conducted to study the effect of micronutrients, zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), boron (13) and a commercial fritted micronutrient product called Zarzameen, on the yield and the yield components of wheat (Triticum aestivum L.), in the Peshawar valley, Pakistan. Different combinations of Zn, Cu. Fe. Mn, B, and Zarzameen were applied at the rate of 4.0, 2.0, 5.0, 2.0, 1.0 kg ha(-1) and 1.0 kg ha(-1), respectively, along with a basal dose of 100 kg ha(-1) nitrogen(N), 75 kg ha(-1) phosphorus (P) and 50 kg ha(-1) potassium (K). The fertilizer treatments (macro- and micronutrients) increased wheat dry matter, grain yield, and straw yield significantly over an unfertilized control. Soil tests for B and Zn were increased both at boot and harvesting stage, and Fe at boot stage, with the addition of micronutrients. Plants without B had showed classical B deficiency symptoms at grain formation stage, but not at vegetative stage. Boron concentration in the dry matter of wheat plants increased with the addition of the B fertilizer in the soil. Boron deficiency was not observed in plants containing >4 mg B kg(-1) at the boot stage, or in soils containing > 1.4 mg kg(-1) hot water soluble B.
Resumo:
Forest fires are suggested as a potential and significant source of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), even though no studies to date provide sufficient evidence to confirm forest fires as a source of PCDD/Fs. Recent investigations in Gueensland, Australia have identified a widespread contamination of PCDDs (in particular OND) in soils and sediments in the coastal region from an unknown source of PCDD/Fs. Queensland is predominately rural; it has few known anthropogenic sources of PCDD/Fs, whereas forest fires are a frequent occurrence. This study was conducted to assess forest fires as a potential source of the unknown PCDD/F contamination in Queensland. A combustion experiment was designed to assess the overall mass of PCDD/Fs before and after a simulated forest fire. The results from this study did not identify an increase in Sigma-PCDD/Fs or OCDD after the combustion process. However, specific non-2,3,7,8 substituted lower chlorinated PCDD/Fs were elevated after the combustion process, suggesting formation from a precursor. The results from this study indicate that forest fires are unlikely to be the source of the unknown PCDD contamination in Gueensland, rather they are a key mechanism for the redistribution of PCDD/Fs from existing sources and precursors.
Resumo:
Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB) were applied to evaluate fertilizer N leaching using 15N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009) were established: i) rainfall + irrigation the full year, ii) rainfall only; and iii) rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0) with a water table located several meters below soil surface (capillary rise = 0). The control volume for water balance calculations was the 0 - 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha-1 for the rates 400 and 800 kg ha-1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.
Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration
Resumo:
Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.
Resumo:
Total petroleum hydrocarbons (TPH) are important environmental contaminants which are toxic to human and environmental receptors. Several analytical methods have been used to quantify TPH levels in contaminated soils, specifically through infrared spectrometry (IR) and gas chromatography (GC). Despite being two of the most used techniques, some issues remain that have been inadequately studied: a) applicability of both techniques to soils contaminated with two distinct types of fuel (petrol and diesel), b) influence of the soil natural organic matter content on the results achieved by various analytical methods, and c) evaluation of the performance of both techniques in analyses of soils with different levels of contamination (presumably non-contaminated and potentially contaminated). The main objectives of this work were to answer these questions and to provide more complete information about the potentials and limitations of GC and IR techniques. The results led us to the following conclusions: a) IR analysis of soils contaminated with petrol is not suitable due to volatilisation losses, b) there is a significant influence of organic matter in IR analysis, and c) both techniques demonstrated the capacity to accurately quantify TPH in soils, irrespective of their contamination levels.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A multiresidue approach using microwave-assisted extraction and liquid chromatography with photodiode array detection was investigated for the determination of butylate, carbaryl, carbofuran, chlorpropham, ethiofencarb, linuron,metobromuron, and monolinuron in soils. The critical parameters of the developed methodology were studied. Method validation was performed by analyzing freshly and aged spiked soil samples. The recoveries and relative standard deviations reached using the optimized conditions were between 77.0 ± 0.46% and 120 ± 2.9% except for ethiofencarb (46.4 ± 4.4% to 105 ± 1.6%) and butylate (22.1 ± 7.6% to 49.2 ± 11%). Soil samples from five locations of Portugal were analysed.