881 resultados para large course design
Resumo:
Over the past two decades there has been a profusion of empirical studies of organizational design and its relationship to efficiency, productivity and flexibility of an organization. In parallel, there has been a wide range of studies about innovation management in different kind of industries and firms. However, with some exceptions, the organizational and innovation management bodies of literature tend to examine the issues of organizational design and innovation management individually, mainly in the context of large firms operating at the technological frontier. There seems to be a scarcity of empirical studies that bring together organizational design and innovation and examine them empirically and over time in the context of small and medium sized enterprises. This dissertation seeks to provide a small contribution in that direction. This dissertation examines the dynamic relationship between organizational design and innovation. This relationship is examined on the basis of a single-case design in a medium sized mechanical engineering company in Germany. The covered time period ranges from 1958 until 2009, although the actual focus falls on the recent past. This dissertation draws on first-hand qualitative empirical evidence gathered through extensive field work. The main findings are: 1. There is always a bundle of organizational dimensions which impacts innovation. These main organizational design dimensions are: (1) Strategy & Leadership, (2) Resources & Capabilities, (3) Structure, (4) Culture, (5) Networks & Partnerships, (6) Processes and (7) Knowledge Management. However, the importance of the different organizational design dimensions changes over time. While for example for the production of simple, standardized parts, a simple organizational design was appropriate, the company needed to have a more advanced organizational design in order to be able to produce customized, complex parts with high quality. Hence the technological maturity of a company is related to its organizational maturity. 2. The introduction of innovations of the analyzed company were highly dependent on organizational conditions which enabled their introduction. The results of the long term case study show, that some innovations would not have been introduced successfully if the organizational elements like for example training and qualification, the build of network and partnerships or the acquisition of appropriate resources and capabilities, were not in place. Hence it can be concluded, that organizational design is an enabling factor for innovation. These findings contribute to advance our understanding of the complex relationship between organizational design and innovation. This highlights the growing importance of a comprehensive, innovation stimulating organizational design of companies. The results suggest to managers that innovation is not only dependent on a single organizational factor but on the appropriate, comprehensive design of the organization. Hence manager should consider to review regularly the design of their organizations in order to maintain a innovation stimulating environment.
Resumo:
Tests on printed circuit boards and integrated circuits are widely used in industry,resulting in reduced design time and cost of a project. The functional and connectivity tests in this type of circuits soon began to be a concern for the manufacturers, leading to research for solutions that would allow a reliable, quick, cheap and universal solution. Initially, using test schemes were based on a set of needles that was connected to inputs and outputs of the integrated circuit board (bed-of-nails), to which signals were applied, in order to verify whether the circuit was according to the specifications and could be assembled in the production line. With the development of projects, circuit miniaturization, improvement of the production processes, improvement of the materials used, as well as the increase in the number of circuits, it was necessary to search for another solution. Thus Boundary-Scan Testing was developed which operates on the border of integrated circuits and allows testing the connectivity of the input and the output ports of a circuit. The Boundary-Scan Testing method was converted into a standard, in 1990, by the IEEE organization, being known as the IEEE 1149.1 Standard. Since then a large number of manufacturers have adopted this standard in their products. This master thesis has, as main objective: the design of Boundary-Scan Testing in an image sensor in CMOS technology, analyzing the standard requirements, the process used in the prototype production, developing the design and layout of Boundary-Scan and analyzing obtained results after production. Chapter 1 presents briefly the evolution of testing procedures used in industry, developments and applications of image sensors and the motivation for the use of architecture Boundary-Scan Testing. Chapter 2 explores the fundamentals of Boundary-Scan Testing and image sensors, starting with the Boundary-Scan architecture defined in the Standard, where functional blocks are analyzed. This understanding is necessary to implement the design on an image sensor. It also explains the architecture of image sensors currently used, focusing on sensors with a large number of inputs and outputs.Chapter 3 describes the design of the Boundary-Scan implemented and starts to analyse the design and functions of the prototype, the used software, the designs and simulations of the functional blocks of the Boundary-Scan implemented. Chapter 4 presents the layout process used based on the design developed on chapter 3, describing the software used for this purpose, the planning of the layout location (floorplan) and its dimensions, the layout of individual blocks, checks in terms of layout rules, the comparison with the final design and finally the simulation. Chapter 5 describes how the functional tests were performed to verify the design compliancy with the specifications of Standard IEEE 1149.1. These tests were focused on the application of signals to input and output ports of the produced prototype. Chapter 6 presents the conclusions that were taken throughout the execution of the work.
Resumo:
A self-flotator vibrational prototype electromechanical drive for treatment of oil and water emulsion or like emulsion is presented and evaluated. Oil production and refining to obtain derivatives is carried out under arrangements technically referred to as on-shore and off-shore, ie, on the continent and in the sea. In Brazil 80 % of the petroleum production is taken at sea and area of deployment and it cost scale are worrisome. It is associated, oily water production on a large scale, carrier 95% of the potential pollutant of activity whose final destination is the environment medium, terrestrial or maritime. Although diversified set of techniques and water treatment systems are in use or research, we propose an innovative system that operates in a sustainable way without chemical additives, for the good of the ecosystem. Labyrinth adsor-bent is used in metal spirals, and laboratory scale flow. Equipment and process patents are claimed. Treatments were performed at different flow rates and bands often monitored with control systems, some built, other bought for this purpose. Measurements of the levels of oil and grease (OGC) of efluents treaty remained within the range of legal framework under test conditions. Adsorbents were weighed before and after treatment for obtaining oil impregna-tion, the performance goal of vibratory action and treatment as a whole. Treatment technolo-gies in course are referenced, to compare performance, qualitatively and quantitatively. The vibration energy consumption is faced with and without conventional flotation and self-flotation. There are good prospects for the proposed, especially in reducing the residence time, by capillary action system. The impregnation dimensionless parameter was created and confronted with consecrated dimensionless parameters, on the vibrational version, such as Weber number and Froude number in quadratic form, referred to as vibrational criticality. Re-sults suggest limits to the vibration intensity
Resumo:
The isotypes of RAR and RXR are retinoic acid and retinoid X acid receptors, respectively, whose ligand-binding domain contains the ligand-dependent activation function, with distinct pharmacological targets for retinoids, involved in the treatment of various cancers and skin diseases. Due to the major challenge which cancer treatment and cure still imposes after many decades to the international scientific community, there is actually considerable interest in new ligands with increased bioactivity. We have focused on the retinoid acid receptor, which is considered an interesting target for drug design. In this work, we carried out density functional geometry optimizations, and different docking procedures. We performed screening in a large database (hundreds of thousands of molecules which we optimized at the AM1 level) yielding a set of potential bioactive ligands. A new ligand was selected and optimized at the B3LYP/6-31G* level. A flexible docking program was used to investigate the interactions between the receptor and the new ligand. The result of this work is compared with several crystallographic ligands of RAR. Our theoretically more bioactive new-ligand indicates stronger and more hydrogen bonds as well as hydrophobic interactions with the receptor. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider ( LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking - through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start- up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb(-1) or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z' and supersymmetric particles, B-s production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb(-1) to 30 fb(-1). The Standard Model processes include QCD, B-physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z(0) boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2-6 describe examples of full analyses, with photons, electrons, muons, jets, missing E-T, B-mesons and tau's, and for quarkonia in heavy ion collisions. Chapters 7-15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A 160 mm bore, 7 T split-pair magnet was constructed and tested aiming to mineral processing through HGMS (high gradient magnetic separation) or HCMS (helical channel magnetic separation.) This work describes the design and test results of the pair of coils operating under current in parallel mode. In the case of antiparallel current mode large repulsive force between coils is generated and a strong magnetic field gradient outside the magnet is created. A continuous magnetic separation system made with a helical channel magnetic separator for application in TiO2 processing is analysed.
Resumo:
We report an unusual case of a 37-year-old woman who presented in 1980 with a serous papillary cystadenocarcinoma of the ovary. The patient refused any treatment and the patient was lost to follow-up for 6 years. After this period of time she returned with an extremely large, cutaneous, cauliflower-type of metastasis located in the lower abdominal wall and measuring 20 x 20 cm. She received two courses of chemotherapy treatment consisting of intraperitoneal cisplatin (100 mg/m2) and intravenous epirubicin (50 mg/m2) every 3 weeks. After the second course of chemotherapy she received cobalt radiotherapy (5000 cGy). Subsequently, she received four more courses of chemotherapy with dramatic remission of the cutaneous metastasis. Shortly after chemotherapy, the patient underwent a laparotomy consisting of the resection of the abdominal wall including the cutaneous metastasis completed by total abdominal hysterectomy, bilateral salpingo-oophorectomy, and omentectomy. The patient is well after the surgery and without any evidence of residual disease after 6 years of follow up. This description illustrates a rare example of ovarian cancer with skin metastases and favorable outcome. (C) 1994 Academic Press, Inc.
Resumo:
This paper introduces Java applet programs for a WWW (world wide web)-HTML (hypertext markup language)-based multimedia course in Power Electronics. The applet programs were developed with the purpose of providing an interactive visual simulation and analysis of idealized uncontrolled single-phase, and three-phase rectifiers. In addition, this paper discusses the development and utilization of JAVA applet programs to solve some design-oriented equations for rectifier applications. The major goal of these proposed JAVA applets was to provide more facilities for the students increase their pace in Power Electronics course, emphasizing waveforms analysis, and providing conditions for an on-line comparative analysis among different hands-on laboratory experiences, via a normal Internet TCP/IP connection. Therefore, using the proposed JAVA applets, which were embedded in a WWW-HTML-based course in Power Electronics, was observed an important improvement of the apprenticeship for the content of this course. Therefore, the course structure becomes fluid, allowing a true on-line course over the WWW, motivating students to learn its content, and apply it in some applications-oriented projects, and their home-works.
Resumo:
Objective: To describe the normal bony orbital structure of the large fruit-eating bat (Artibeus lituratus) with emphasis on a unique intraorbital bony structure previously not described in the literature. Procedures: The bony anatomy of the orbital cavity was studied on dissected skulls of large fruit-eating bats. The anatomic description of a unique intraorbital spine was made while studying the bony orbit of macerated skulls. Additional observations were made on dissected formalin-fixed whole heads. Both procedures were performed under a stereo dissecting microscope, using ×2-4-magnification. A histologic analysis of soft tissues surrounding this cylindrical bony structure was performed using cross and longitudinal oblique sections from decalcified whole heads, which had been fixed in formalin. Additionally, biometric measurements and a histomorphometric analysis were performed. Results and conclusions: An intraorbital cylindrical osseous structure measuring 3.96 ± 0.68 mm in length and 155.62 ± 14.03 μm in diameter was observed in the large fruit-eating bat (A. lituratus), creating a unique orbital structural design among mammals. We suggest the name optic spine of the alisphenoid bone. The anatomic, biometric and histologic characterization of this element might contribute to a further understanding of the dynamics of bat vision and the sort of factors that influenced evolution of the visual system of microbats. The authors hope that the documentation of this distinctive anatomic feature will also expand the debate about the phylogenetic analysis of the relationship among bat species in the near future. © 2007 American College of Veterinary Ophthalmologists.
Resumo:
This paper deals with the usage of interactive simulations tools to serve as an oriented design tool for the lectures and laboratory experiments in the power electronics courses. A dynamic and interactive visualization of simulations for idealized converters in steady state are provided by the proposed educational tools, allowing students to acquire qualification in non-isolated DC-DC converters, without previous circuitry knowledge, either without the usage of sophisticated simulation packages. The interaction with proposed simulation tools can be accomplished by student using direct or graphic mode. In direct mode the parameters related with the design of converter can be inserted simply editing default values presented in textboxes, while in the graphic mode students interact indirectly with design information by manipulating visual widgets. In order to corroborate the proposed interactive simulation tools, comparisons of results from buck-boost and boost converters on proposed tools and a well-known simulator package with those on experimental evaluation from laboratory classes were presented. © 2009 IEEE.
Resumo:
This paper analyses the static and dynamic behavior of the railroad track model in laboratory. Measurements of stresses and strains on a large-scale railroad track apparatus were studied. The model includes: compacted soil, representing the final layers of platform, ballast layer, and ties (steel, wooden, and pre-stressed concrete). The soil and soil ballast interface were instrumented with pneumatic stress gauge. Settlement measurement device were positioned at the same levels as the load cells. Loads were applied by hydraulic actuators, statically and dynamically. After the prescribed number of load cycles, in pre-determined intervals, stresses and strains were measured. Observations indicate that stress and strain distributions, transmitted by wooden or steel ties, behave similarly. A more favorable behavior was observed with pre-stressed concrete mono block ties. Non-linear response was observed after a threshold numbers of cycles were surpassed, showing that the strain modulus increases with the numbers of cycles. © 2009 IOS Press.
Resumo:
Once defined the relationship between the Starter Motor components and their functions, it is possible to develop a mathematical model capable to predict the Starter behavior during operation. One important aspect is the engagement system behavior. The development of a mathematical tool capable of predicting it is a valuable step in order to reduce the design time, cost and engineering efforts. A mathematical model, represented by differential equations, can be developed using physics laws, evaluating force balance and energy flow through the systems degrees of freedom. Another important physical aspect to be considered in this modeling is the impact conditions (particularly on the pinion and ring-gear contact). This work is a report of those equations application on available mathematical software and the resolution of those equations by Runge-Kutta's numerical integration method, in order to build an accessible engineering tool. Copyright © 2011 SAE International.
Resumo:
The implementation of vibration analysis techniques based on virtual instrumentation has spread increasingly in the academic and industrial branch, since the use of any software for this type of analysis brings good results at low cost. Among the existing software for programming and creation of virtual instruments, the LabVIEW was chosen for this project. This software has good interface with the method of graphical programming. In this project, it was developed a system of rotating machine condition monitoring. This monitoring system is applied in a test stand, simulating large scale applications, such as in hydroelectric, nuclear and oil exploration companies. It was initially used a test stand, where an instrumentation for data acquisition was inserted, composed of accelerometers and inductive proximity sensors. The data collection system was structured on the basis of an NI 6008 A/D converter of National Instruments. An electronic circuit command was developed through the A/D converter for a remote firing of the test stand. The equipment monitoring is performed through the data collected from the sensors. The vibration signals collected by accelerometers are processed in the time domain and frequency. Also, proximity probes were used for the axis orbit evaluation and an inductive sensor for the rotation and trigger measurement. © (2013) Trans Tech Publications, Switzerland.