971 resultados para kernel density estimator
Resumo:
Pratylenchus thornei is a major pathogen of wheat in Australia. Two glasshouse experiments with four wheat cultivars that had different final populations (Pf) of P. thornei in the field were used to optimise conditions for assessing resistance. With different initial populations (Pi) ranging up to 5250 P. thornei/kg soil, Pf of P. thornei increased to 16 weeks after sowing, and then decreased at 20 weeks in some cultivar x Pi combinations. The population dynamics of P. thornei up to 16 weeks were best described by a modified exponential equation P f (t) = aP i e kt where P f (t) is the final population density at time t, P i is the initial population density, a is the proportion of P i that initiates population development, and k is the intrinsic rate of increase of the population. The cultivar GS50a had very low k values at Pi of 5250 and 1050 indicating its resistance, Suneca and Potam had high k values indicating susceptibility, whereas intolerant Gatcher had a low value at the higher Pi and a high value at the lower Pi. Nitrate fertiliser increased plant growth and Pf values of susceptible cultivars, but in unplanted soil it decreased Pf. Nematicide (aldicarb 5 mg/kg soil) killed P. thornei more effectively in planted than in unplanted soil and increased plant growth particularly in the presence of N fertiliser. In both experiments, the wheat cultivars Suneca and Potam were more susceptible than the cultivar GS50a reflecting field results. The method chosen to discriminate wheat cultivars was to assess Pf after growth for 16 weeks in soil with Pi ~1050–5250 P. thornei/kg soil and fertilised with 200 mg NO3–N/kg soil.
Resumo:
Probiotic supplements are single or mixed strain cultures of live microorganisms that benefit the host by improving the properties of the indigenous microflora (Seo et al 2010). In a pilot study at the University of Queensland, Norton et al (2008) found that Bacillus amyloliquefaciens Strain H57 (H57), primarily investigated as an inoculum to make high-quality hay, improved feed intake and nitrogen utilisation over several weeks in pregnant ewes. The purpose of the following study was to further challenge the potential of H57 -to show it survives the steam-pelleting process, and that it improves the performance of ewes fed pellets based on an agro-industrial by-product with a reputation for poor palatability, palm kernel meal (PKM), (McNeill 2013). Thirty-two first-parity White Dorper ewes (day 37 of pregnancy, mean liveweight = 47.3 kg, mean age = 15 months) were inducted into individual pens in the animal house at the University of Queensland, Gatton. They were adjusted onto PKM-based pellets (g/kg drymatter (DM): PKM, 408; sorghum, 430; chick pea hulls, 103; minerals and vitamins; Crude protein, 128; ME: 11.1MJ/kg DM) until day 89 of pregnancy and thereafter fed a predominately pelleted diet incorporating with or without H57 spores (10 9 colony forming units (cfu)/kg pellet, as fed), plus 100g/ewe/day oaten chaff, until day 7 of lactation. From day 7 to 20 of lactation the pelleted component of the diet was steadily reduced to be replaced by a 50:50 mix of lucerne: oaten chaff, fed ad libitum, plus 100g/ewe/day of ground sorghum grain with or without H57 (10 9 cfu/ewe/day). The period of adjustment in pregnancy (day 37-89) extended beyond expectations due to some evidence of mild ruminal acidosis after some initially high intakes that were followed by low intakes. During that time the diet was modified, in an attempt to improve palatability, by the addition of oaten chaff and the removal of an acidifying agent (NH4Cl) that was added initially to reduce the risk of urinary calculi. Eight ewes were removed due to inappetence, leaving 24 ewes to start the trial at day 90 of pregnancy. From day 90 of pregnancy until day 63 of lactation, liveweights of the ewes and their lambs were determined weekly and at parturition. Feed intakes of the ewes were determined weekly. Once lambing began, 1 ewe was removed as it gave birth to twin lambs (whereas the rest gave birth to a single lamb), 4 due to the loss of their lambs (2 to dystocia), and 1 due to copper toxicity. The PKM pellets were suspected to be the cause of the copper toxicity and so were removed in early lactation. Hence, the final statistical analysis using STATISTICA 8 (Repeated measures ANOVA for feed intake, One-way ANOVA for liveweight change and birth weight) was completed on 23 ewes for the pregnancy period (n = 11 fed H57; n = 12 control), and 18 ewes or lambs for the lactation period (n = 8 fed H57; n = 10 control). From day 90 of pregnancy until parturition the H57 supplemented ewes ate 17 more DM (g/day: 1041 vs 889, sed = 42.4, P = 0.04) and gained more liveweight (g/day: 193 vs 24.0, sed = 25.4, P = 0.0002), but produced lambs with a similar birthweight (kg: 4.18 vs 3.99, sed = 0.19, P = 0.54). Over the 63 days of lactation the H57 ewes ate similar amounts of DM but grew slower than the control ewes (g/day: 1.5 vs 97.0, sed = 21.7, P = 0.012). The lambs of the H57 ewes grew faster than those of the control ewes for the first 21 days of lactation (g/day: 356 vs 265, sed = 16.5, P = 0.006). These data support the findings of Norton et al (2008) and Kritas et al (2006) that certain Bacillus spp. supplements can improve the performance of pregnant and lactating ewes. In the current study we particularly highlighted the capacity of H57 to stimulate immature ewes to continue to grow maternal tissue through pregnancy, possibly through an enhanced appetite, which appeared then to stimulate a greater capacity to partition nutrients to their lambs through milk, at least for the first few weeks of lactation, a critical time for optimising lamb survival. To conclude, H57 can survive the steam pelleting process to improve feed intake and maternal liveweight gain in late pregnancy, and performance in early lactation, of first-parity ewes fed a diet based on PKM.
Resumo:
Purpose To determine the association between conjunctival goblet cell density (GCD) assessed using in vivo laser scanning confocal microscopy and conjunctival impression cytology in a healthy population. Methods Ninety (90) healthy participants undertook a validated 5-item dry eye questionnaire, non-invasive tear film break-up time measurement, ocular surface fluorescein staining and phenol red thread test. These tests where undertaken to diagnose and exclude participants with dry eye. The nasal bulbar conjunctiva was imaged using laser scanning confocal microscopy (LSCM). Conjunctival impression cytology (CIC) was performed in the same region a few minutes later. Conjunctival goblet cell density was calculated as cells/mm2. Results There was a strong positive correlation of conjunctival GCD between LSCM and CIC (ρ = 0.66). Conjunctival goblet cell density was 475 ± 41 cells/mm2 and 466 ± 51 cells/mm2 measured by LSCM and CIC, respectively. Conclusions The strong association between in vivo and in vitro cellular analysis for measuring conjunctival GCD suggests that the more invasive CIC can be replaced by the less invasive LSCM in research and clinical practice.
Resumo:
In this study, we investigated the extent and physiological bases of yield variation due to row spacing and plant density configuration in the mungbean Vigna radiata (L.) Wilczek variety “Crystal” grown in different subtropical environments. Field trials were conducted in six production environments; one rain-fed and one irrigated trial each at Biloela and Emerald, and one rain-fed trial each at Hermitage and Kingaroy sites in Queensland, Australia. In each trial, six combinations of spatial arrangement of plants, achieved through two inter-row spacings of 1 m or 0.9 m (wide row), 0.5 m or 0.3 m (narrow row), with three plant densities, 20, 30 and 40 plants/m2, were compared. The narrow row spacing resulted in 22% higher shoot dry matter and 14% more yield compared to the wide rows. The yield advantage of narrow rows ranged from 10% to 36% in the two irrigated and three rain-fed trials. However, yield loss of up to 10% was also recorded from narrow rows at Emerald where the crop suffered severe drought. Neither the effects of plant density, nor the interaction between plant density and row spacing, however, were significant in any trial. The yield advantage of narrow rows was related to 22% more intercepted radiation. In addition, simulations by the Agricultural Production Systems Simulator model, using site-specific agronomy, soil and weather information, suggested that narrow rows had proportionately greater use of soil water through transpiration, compared to evaporation resulting in higher yield per mm of soil water. The long-term simulation of yield probabilities over 123 years for the two row configurations showed that the mungbean crop planted in narrow rows could produce up to 30% higher grain yield compared to wide rows in 95% of the seasons.
Resumo:
The frequency-dependent response of a pinned charge density wave is considered in terms of forced vibration of an oscillator held in an anharmonic well. It is shown that the effective pinning-frequency can be reduced by applying a d.c. field. If a strong a.c. field, superposed on a d.c. field is applied on such a system “jumps” can be observed in the frequency dependent response of the system. The conditions at which these “jumps” occur are investigated with reference to NbSe3. The possibility of observing such phenomena in other systems like superionic conductors, non-linear dielectrics like ferroelectrics is pointed out. The characteristics are expressed in terms of some “scaled variables” — in terms of which the characteristics show a universal behaviour
Resumo:
The Minimum Description Length (MDL) principle is a general, well-founded theoretical formalization of statistical modeling. The most important notion of MDL is the stochastic complexity, which can be interpreted as the shortest description length of a given sample of data relative to a model class. The exact definition of the stochastic complexity has gone through several evolutionary steps. The latest instantation is based on the so-called Normalized Maximum Likelihood (NML) distribution which has been shown to possess several important theoretical properties. However, the applications of this modern version of the MDL have been quite rare because of computational complexity problems, i.e., for discrete data, the definition of NML involves an exponential sum, and in the case of continuous data, a multi-dimensional integral usually infeasible to evaluate or even approximate accurately. In this doctoral dissertation, we present mathematical techniques for computing NML efficiently for some model families involving discrete data. We also show how these techniques can be used to apply MDL in two practical applications: histogram density estimation and clustering of multi-dimensional data.
Resumo:
Worldwide population growth and economic agglomeration is driving increasing urban density within larger metropolitan conurbations. Population growth and housing diversity and affordability issues in Queensland have seen an increasing demand for more diverse and higher density development. Under Queensland’s flexible planning regulatory provisions, a level of ‘medium’ to ‘high density’ is being achieved by a focus on fine-grained urban design, low scale development, lot diversity, and delivery of single dwelling products. This for Queensland (and Australia) has been an unprecedented innovation in urban and dwelling design. Dwellings are being delivered on lots with zero regulatory minimum sizes providing for a range of new products including ‘apartments on the ground’. This paper reviews recent and nascent demonstrations of EDQ’s fine-grained urbanism principles, identifiable with historical ‘vernacular suburbanism’. The paper introduces and defines a concept of a ‘natural density’ linking human scale built form with walkability. The paper challenges the notion that (sub)urban development, outside major city centres, needs to be of a higher scale to achieve density and diversity aspirations. ‘Natural density’ provides a means of achieving the increasing demand for more diverse and higher density development.
Resumo:
A theory for the emission of X-rays from a high density gaseous plasma interacting with CO2 laser is given. It predicts a sharp increase in the X-ray intensity for densities close to the critical.
Resumo:
Abstract is not available.
Resumo:
Protein phosphorylation regulates a wide variety of cellular processes. Thus, we hypothesize that single-nucleotide polymorphisms (SNPs) that may modulate protein phosphorylation could affect osteoporosis risk. Based on a previous conventional genome-wide association (GWA) study, we conducted a three-stage meta-analysis targeting phosphorylation-related SNPs (phosSNPs) for femoral neck (FN)-bone mineral density (BMD), total hip (HIP)-BMD, and lumbar spine (LS)-BMD phenotypes. In stage 1, 9593 phosSNPs were meta-analyzed in 11,140 individuals of various ancestries. Genome-wide significance (GWS) and suggestive significance were defined by α = 5.21 × 10–6 (0.05/9593) and 1.00 × 10–4, respectively. In stage 2, nine stage 1–discovered phosSNPs (based on α = 1.00 × 10–4) were in silico meta-analyzed in Dutch, Korean, and Australian cohorts. In stage 3, four phosSNPs that replicated in stage 2 (based on α = 5.56 × 10–3, 0.05/9) were de novo genotyped in two independent cohorts. IDUA rs3755955 and rs6831280, and WNT16 rs2707466 were associated with BMD phenotypes in each respective stage, and in three stages combined, achieving GWS for both FN-BMD (p = 8.36 × 10–10, p = 5.26 × 10–10, and p = 3.01 × 10–10, respectively) and HIP-BMD (p = 3.26 × 10–6, p = 1.97 × 10–6, and p = 1.63 × 10–12, respectively). Although in vitro studies demonstrated no differences in expressions of wild-type and mutant forms of IDUA and WNT16B proteins, in silico analyses predicts that WNT16 rs2707466 directly abolishes a phosphorylation site, which could cause a deleterious effect on WNT16 protein, and that IDUA phosSNPs rs3755955 and rs6831280 could exert indirect effects on nearby phosphorylation sites. Further studies will be required to determine the detailed and specific molecular effects of these BMD-associated non-synonymous variants. © 2015 American Society for Bone and Mineral Research.
Resumo:
Particle filters find important applications in the problems of state and parameter estimations of dynamical systems of engineering interest. Since a typical filtering algorithm involves Monte Carlo simulations of the process equations, sample variance of the estimator is inversely proportional to the number of particles. The sample variance may be reduced if one uses a Rao-Blackwell marginalization of states and performs analytical computations as much as possible. In this work, we propose a semi-analytical particle filter, requiring no Rao-Blackwell marginalization, for state and parameter estimations of nonlinear dynamical systems with additively Gaussian process/observation noises. Through local linearizations of the nonlinear drift fields in the process/observation equations via explicit Ito-Taylor expansions, the given nonlinear system is transformed into an ensemble of locally linearized systems. Using the most recent observation, conditionally Gaussian posterior density functions of the linearized systems are analytically obtained through the Kalman filter. This information is further exploited within the particle filter algorithm for obtaining samples from the optimal posterior density of the states. The potential of the method in state/parameter estimations is demonstrated through numerical illustrations for a few nonlinear oscillators. The proposed filter is found to yield estimates with reduced sample variance and improved accuracy vis-a-vis results from a form of sequential importance sampling filter.