941 resultados para isothermal titration calorimetry
Resumo:
The isothermal crystallization and melting behavior of the poly(epsilon-caprolactone) (PCL)/poly(ethylene oxide)(PEO) diblock copolymer has been studied by WAXD, SAXS, and DSC methods. Only the PCL block is crystallizable; the PEO block of weight fraction 20% cannot crystallize, although its corresponding homopolymer has strong crystallizability. The long period, amorphous layer, and crystalline lamella of the PCL/PEO block copolymer all increase with the rise in the crystallization temperature, and the thickness of the amorphous layer is much larger than that of crystalline lamella due to the existence of the PEO block in the amorphous region. The isothermal crystallization of the PCL/PEO block copolymer is investigated by using the theory of Turnbull and Fischer. It is found that the amorphous PEO block has a great influence on the nucleation of PCL block crystallization, and the extent of this influence depends on crystallization conditions, especially temperature. The outstanding characteristics are the phenomenon of the double melting peaks in the melting process of the PCL/PEO block copolymer after isothermal crystallization at different temperatures and the transformation of melting peaks from double peaks to a single peak with variations in the crystallization condition. They are related mainly to the existence of the PEO block bonding chemically with the PCL block. In summing up results of investigations into the crystallization and melting behavior of the PCL/PEO block copolymer, it is interesting to notice that when the PCL/PEO block copolymer crystallizes at three different crystallization temperatures, i.e., below 0 degrees C, between 0 and 35 degrees C, and above 35 degrees C, the variation of peak melting temperature is similar to that of overall crystallization rates in the process of isothermal crystallization. The results can be elucidated by the effect of the PEO block on the crystallization of the PCL block, especially its nucleation. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Based on Jeziorny theory, the kinetics of phase transition of poly(ester-imide) has been determined under non-isothermal condition by using differential scanning calorimetry (DSC). Avrami exponent n, kinetic parameters G(c) and rate constant Z(c) were derived and discussed.
Resumo:
The melting behavior of poly(methyl methacrylate)-grafted nascent polyethylene reactor powder by plasma irradiation was studied by differential scanning calorimetry (DSC). The grafting yield ranged hom 11 to 190%. Grafting was found to lower both melting point and heat of fusion during the first run of DSC determination. The heat of fusion was used to calculate the apparent grafting yield of the samples. There was little strain induced by plasma-irradiated grafting on the surface of the polyethylene crystals. A method to determine the covalent grafting yield in the graft copolymer systems was developed. (C) 1995 John Wiley & Sons, Inc.
Resumo:
Polyaminopolycarboxylate gadolinium (III) complexes have been studied intensively in recent years because of their potential uses as contrast agents for magnetic resonance imaging (MHI)([1]). The research interests are mainly focussed on Gd3+ complexes of DTPA, DOTA and their various derivatives. Four kinds of Gd3+ complexes can be used presently in clinical MRI, which are GD(DTPA)([2]), Gd(DOTA)([3]), Gd(DTPA-BMA)([4]) and Gd(HP-DO3A)([5]). Here report two new DTPA bis (amide) derivatives-diethylenetriaminepentaacetic acid-N, N ''-bis (dimethylamide) (DTPA-BDMA) and -bis (diethylamide) (DTPA-BDEA).
Resumo:
The aim of this work is to describe the most recent achievements in the field of the physical chemistry of mixing. The systems studied have been classified according to the amount of thermic effect due to the blending and its interpretation. When polystyrene (PS) and poly(alpha-methylstyrene) (P alpha MS) are blended, the interaction is weak and Delta(mix)H is close to zero. The presence of polar atoms and/or groups increases the stability of the blend and, therefore, Delta(mix)H becomes more negative. Poly(ethylene oxide) (PEO), poly(methyl acrylate) (PMA), poly(methyl methacrylate) (PMMA) and poly(vinylacetate) (PVAc), when mixed to form binary systems, show large differences from their properties when pure. If hydrogen bonding takes place, the interactions are readily detected and a large effect is calorimetrically determined. Cellulose diacetate (CDA) and poly(vinylpyrrolidone) (PVP) have been studied as an example of a strongly interacting system.
Resumo:
The stability constants and thermodynamic functions for complexes of rare earth with L-phenylalanine have been determined by potentiometry and calorimetry at 25-degrees-C and ionic strength of 0.15mol.dm-3(NaCl). Stability of the complexes shows the "Tetrad effect". The entropy change makes a predominant contribution to the stability of these complexes. The ligand is coordinated to rare earth ions through its -CO2- and -NH2 group, and dehydration of ions plays an important role in coordination reaction.
Resumo:
A new isothermal equation of state for polymers in the solid and the liquid is given by P = B(T, 0)/(n - m){[V(T, 0)/V(T, P)]n + 1 - [V(T, 0)/V(T, P)]m + 1} where n = 6.14 and m = 1.16 are general constant's for polymer systems. Comparison of the equation with experimental data is made for six polymers at different temperatures and pressures. The results predict that the equation of state describes the isothermal compression behaviour of polymers in the glass and the melt states, except at the transition temperature.
Resumo:
The crystallinity of two series of uniform oligo(oxyethylene) mono-n-alkyl ethers has been investigated: alpha-alkyl,omega-hydroxyoligo(oxyethylene)s, H(CH2)n(OCH2CH2)mOH, and alpha-alkyl,omega-methoxyoligo(oxyethylene)s, H(CH2)n(OCH2CH2)mOCH3. The hydroxy-ended oligomers formed bilayer crystals, and the methoxy-ended oligomers formed monolayer crystals. The helical oxyethylene blocks were oriented normal to the layer-crystal end-group plane, whilst the trans-planar alkyl blocks were generally tilted at an angle delta = 60-degrees. The melting temperature and enthalpy of fusion were higher for hydroxy-ended oligomers than for corresponding methoxy-ended oligomers.
Resumo:
Using the LAMP method, a highly specific and sensitive detection system for genetically modified soybean (Roundup Ready) was designed. In this detection system, a set of four primers was designed by targeting the exogenous 35S epsps gene. Target DNA was amplified and visualized on agarose gel within 45 min under isothermal conditions at 65 degrees C. Without gel electrophoresis, the LAMP amplicon was visualized directly in the reaction tube by the addition of SYBR Green I for naked-eye inspection. The detection sensitivity of LAMP was 10-fold higher than the nested PCR established in our laboratory. Moreover, the LAMP method was much quicker, taking only 70 min, as compared with 300 min for nested PCR to complete the analysis of the GM soybean. Compared with traditional PCR approaches, the LAMP procedure is faster and more sensitive, and there is no need for a special PCR machine or electrophoresis equipment. Hence, this method can be a very useful tool for GMO detection and is particularly convenient for fast screening.
Resumo:
Genetic oscillators, such as circadian clocks, are constantly perturbed by molecular noise arising from the small number of molecules involved in gene regulation. One of the strongest sources of stochasticity is the binary noise that arises from the binding of a regulatory protein to a promoter in the chromosomal DNA. In this study, we focus on two minimal oscillators based on activator titration and repressor titration to understand the key parameters that are important for oscillations and for overcoming binary noise. We show that the rate of unbinding from the DNA, despite traditionally being considered a fast parameter, needs to be slow to broaden the space of oscillatory solutions. The addition of multiple, independent DNA binding sites further expands the oscillatory parameter space for the repressor-titration oscillator and lengthens the period of both oscillators. This effect is a combination of increased effective delay of the unbinding kinetics due to multiple binding sites and increased promoter ultrasensitivity that is specific for repression. We then use stochastic simulation to show that multiple binding sites increase the coherence of oscillations by mitigating the binary noise. Slow values of DNA unbinding rate are also effective in alleviating molecular noise due to the increased distance from the bifurcation point. Our work demonstrates how the number of DNA binding sites and slow unbinding kinetics, which are often omitted in biophysical models of gene circuits, can have a significant impact on the temporal and stochastic dynamics of genetic oscillators.
Resumo:
This paper investigates an isothermal fatigue test for solder joints developed at the NPL. The test specimen is a lap joint between two copper arms. During the test the displacement at the ends of the copper are controlled and the force measured. The modeling results in the paper show that the displacement across the solder joint is not equal to the displacement applied at the end of the specimen. This is due to deformation within the copper arms. A method is described to compensate for this difference. The strain distribution in the solder was determined by finite element analysis and compared to the distribution generated by a theoretical 'ideal' test which generates an almost pure shear mode in the solder. By using a damage-based constitutive law the shape of the crack generated in the specimen has been predicted for both the actual test and the ideal pure shear test. Results from the simulations are also compared with experimental data using SnAgCu solder.
Resumo:
The possible failure mechanisms of anisotropic conductive film (ACF) joints under isothermal ageing conditions have been identified through experiments. It has been found that ACF joints formed at higher bonding temperatures can prevent increases in the contact resistance for any ageing temperature. The higher the ageing temperature the higher the electrical failure rate is. The formation of conduction gaps between the conductive particles and the pads and damages to the metal coatings of the particle have been identified as the reasons behind the electrical failures during ageing. In order to understand the mechanism for the formation of the conduction gap and damages in metal coatings during the isothermal ageing, computer modelling has been carried out and the results are discussed extensively. The computer analysis shows that stresses concentrate at the edges of the particle–pad interface, where the adhesive matrix meets the particle. This could lead to subsequent damages and reductions in the adhesion strength in that region and it is possible for the conductive particle to be detached from the pad and the adhesive matrix. It is believed that because of this a conduction gap appears. Furthermore, under thermal loading the thermal expansion of the adhesive matrix squeezes the conductive particle and damages the metal coatings. Experimental evidences support this computational finding. It is, therefore, postulated that if an ACF-based electronic component operates in a high temperature aging condition, its electrical and mechanical functionalities will be at risk.