935 resultados para interval-censored data
Resumo:
Bedding dips in the CRP-3 drillhole were determined in three ways: (1) analysis of a dipmeter log, (2) identification of bed boundaries on borehole televiewer log images, and (3) identification of bed boundaries on digital images of the outer surfaces of oriented cores. All three methods determine both dip magnitude and downdip azimuth of bedding. Dipmeter results document variations in bedding dip throughout the logged interval (20-902 mbsf), whereas core and televiewer results are available at present only for selected depth intervals. Dipmeter data indicate that structural dip is remarkably constant, at 21° dip to azimuth 65°, throughout the Tertiary shelf section, except for the top 100 m where dips appear to be 5-10° shallower. This pattern, in conjunction with the systematically increasing dips throughout CRP-2A, suggests that the growth faulting active during CRP-2A deposition began during the final period of deposition at CRP-3. Normal faults at 260 and 539 mbsf in CRP-3 exhibit neither drag (localized dip steepening) nor significant changes in structural dip across them. Oriented core and televiewer analyses, covering a total of 200 m in the interval 400-900 mbsf, indicate bedding patterns that confirm the dipmeter results. The doleritic breccia at the base of the Tertiary section has steeper dips than overlying structural dips, possibly indicating a sedimentary dip to ENE in these fan sediments. Dip directions in the underlying Devonian Beacon sandstone are surprisingly similar to those in the overlying Tertiary section. Superimposed on the average Beacon dip of 22° to the ENE are localized tilts of up to 20°, probably caused by Tertiary fracturing and brecciation rather than original sedimentary dip variations.
Resumo:
Long-term environmental time series of continuously collected data are fundamental to identify and classify pulses and determine their role in aquatic systems. This paper presents a web based archive for limnological and meteorological data collected by integrated system for environmental monitoring (SIMA). The environmental parameters that are measured by SIMA are: chlorophyll-a (µg/L), water surface temperature (ºC), water column temperature by a thermistor string (ºC), turbidity (NTU), pH, dissolved oxygen concentration (mg/L), electric conductivity (µS/cm), wind speed (m/s) and direction (º), relative humidity (%), short wave radiation (W/m**2), barometric pressure (hPa). The data are collected in preprogrammed time interval (1 hour) and are transmitted by satellite in quasi-real time for any user in a range of 2500 km from the acquisition point. So far 11 hydroelectric reservoirs being monitored using the SIMA buoy. A basic statistics (mean and standard deviation) for some parameters and an example of time series were displayed. The main observed problem are divided into sensors and satellite. The sensors problems is due to the environmental characteristics of each water body. In acid waters the sensors of water quality rapidly degrade, and the collected data are invalid. Another problem is the infestation of periphyton in the sensor. SIMA buoy makes the parameters readings every hour, or 24 readings per day. However, not always received all readings because the system requires satellites passing over the buoy antenna to complete the transfer and due to the satellite constellation position, some locations inland are not met as often as necessary to complete all transmissions. This is the more often causes for lack in the time series.
Resumo:
The first 1400-year floating varve chronology for north-eastern Germany covering the late Allerød to the early Holocene has been established by microscopic varve counts from the Rehwiese palaeolake sediment record. The Laacher See Tephra (LST), at the base of the studied interval, forms the tephrochronological anchor point. The fine laminations were examined using a combination of micro-facies and ?-XRF analyses and are typical of calcite varves, which in this case provide mainly a warm season signal. Two varve types with different sub-layer structures have been distinguished: (I) complex varves consisting of up to four seasonal sub-layers formed during the Allerød and early Holocene periods, and, (II) simple two sub-layer type varves only occurring during the Younger Dryas. The precision of the chronology has been improved by varve-to-varve comparison of two independently analyzed sediment profiles based on well-defined micro-marker layers. This has enabled both (1) the precise location of single missing varves in one of the sediment profiles, and, (2) the verification of varve interpolation in disturbed varve intervals in the parallel core. Inter-annual and decadal-scale variability in sediment deposition processes were traced by multi-proxy data series including seasonal layer thickness, high-resolution element scans and total organic and inorganic carbon data at a five-varve resolution. These data support the idea of a two-phase Younger Dryas, with the first interval (12,675 - 12,275 varve years BP) characterised by a still significant but gradually decreasing warm-season calcite precipitation and a second phase (12,275 - 11,640 varve years BP) with only weak calcite precipitation. Detailed correlation of these two phases with the Meerfelder Maar record based on the LST isochrone and independent varve counts provides clues about regional differences and seasonal aspects of YD climate change along a transect from a location proximal to the North Atlantic in the west to a more continental site in the east.
Resumo:
Differences in regional responses to climate fluctuations are well documented on short time scales (e.g., El Niño-Southern Oscillation), but with the exception of latitudinal temperature gradients, regional patterns are seldom considered in discussions of ancient greenhouse climates. Contrary to the expectation of global warming or global cooling implicit in most treatments of climate evolution over millions of years, this paper shows that the North Atlantic warmed by as much as 6°C (1.5% decrease in d18O values of planktic foraminifera) during the Maastrichtian global cooling interval. We suggest that warming was the result of the importation of heat from the South Atlantic. Decreasing North Atlantic d18O values are also associated with increasing gradients in planktic d13C values, suggesting increasing surface-water stratification and a correlated strengthening of the North Atlantic Polar Front. If correct, this conclusion predicts arctic cooling during the late Maastrichtian. Beyond implications for the Maastrichtian, these data demonstrate that climate does not behave as if there is a simple global thermostat, even on geologic time scales.
Resumo:
Auxiliary data include one file with alkenone-derived UK'37 data and sea surface temperatures (SST). On these data Figs. 7 and 8 of the manuscript are based. The SST are derived from UK'37 by using the transfer function: SST = 29.876 UK'37 - 1.334 of Conte et al. (2006). The data are against the ages (in A.D.) of samples derived from cores GT91-1 (39[deg]59'23"N, 17[deg]45'25"E), GT89-3 and GT90-3 (both 39[deg]45'43"N, 17[deg]53'55"E ). Also included are composite records for UK'37 and SST. For creating the composite records, GT-89-3 was taken as reference core. In the overlapping period the GT89-3 data seem in general lower than the GT91-1 data. To accommodate for this in the composite record, the average difference (0.0343 UK'37 units; equivalent to 1.023 [deg]C) was subtracted from the GT91-1 record. Hereafter, for each depth in the overlapping interval the respective values (UK'37 or SST) of GT89-3 and GT91-1 were averaged. We have also averaged with 16 additional alkenone measurements, from 1793 to 1851, performed in the GT90-3 core.
Resumo:
The Cariaco Basin is a 1400-m-deep depression approximately 160 km long by 70 km wide located off the central Venezuelan coast . It is connected to the Atlantic Ocean by a sill ~100-m-deep, and two slightly deeper channels that breech it; Canal Centinela (146-m-deep) and Canal de la Tortuge (135-m-deep). High surface production rates and restricted circulation result in anoxic waters below ca. 275 m. The depth of the oxycline varies between 250 and 320 m and is independent of density. Rather, fluctuations in oxycline depth appear to be due to lateral intrusions of Caribbean Sea water that are linked to eddies along the continental shelf. A mooring with five sediment traps (Z, A-D) is located in the eastern Cariaco Basin. Traps A-D have been in place since November 1995. Trap A is located in oxic waters at 226 ± 6 m. Trap B is located at 407 ± 3 m and Trap D is located at 1205 ± 3 m. Trap C was located at a depth of 880 ± 2 m from Jan. 1996 to Nov. 2000, and was moved to 807 ± 2 m in Nov. 2000. A fifth trap, Z, was added in November 2003 at 110 m for the first 6 months, and at 150 m thereafter. All five sediment traps are coneshaped with a 0.5 m**2 opening that is covered with a baffle top to reduce turbulence. The mooring is deployed for six-month intervals and each sample collection cup is filled with a buffered 3.2% formalin solution as a preservative for the accumulating organic matter. The cups are numbered 1-13, with cup 1 collecting for the two-week interval immediately following deployment, and cup 13 collecting for the 2 weeks immediately before recovery.