953 resultados para insect population dynamics


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The protozoan parasite Marteilia refringens has been partly responsible for the severe decrease in the production of the European flat oyster Ostrea edulis Linnaeus in France since the 1970s. The calanoid copepod Paracartia grani Sars was recently found to be a host for M refringens in French shallow-water oyster ponds ('claires'). This study reconsidered M refringens transmission dynamics in the light of this finding, taking into account not only oyster infection dynamics and environmental factors but also data concerning the copepod host. P. grani population dynamics in the claire under study revealed that this species is the dominant planktonic copepod in this confined ecosystem. During winter, M refringens overwintered in O. edulis, with P. grani existing only as resting eggs in the sediment. The increase in temperature in spring controlled and synchronized both the release of M refringens sporangia in the oyster feces, and the hatching of the benthic resting eggs of the copepod. Infection of oysters by M refringens was limited to June, July and August, coinciding with (1) the highest temperature recorded in the claire, and (2) the highest abundance of P. grani. PCR detection of M refringens in P. grani during the summer period was linked to the release of parasite sporangia by the oyster. Our results are supported by previous results on the effective transmission of this parasite from the oyster to the copepod.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During the last years tropical forest has been a target of intense study especially due to its recent big scale destruction. Although a lot still needs to be explored, we start realizing how negative can the impact of our actions be for the ecosystem. Subsequently, the living community have been developing strategies to overcome this problem avoiding bottlenecks or even extinctions. Cooperative breeding (CB) has been recently pointed out as one of those strategies. CB is a breeding system where more than two individuals raise one brood. In most of the cases, extra individuals are offspring that delay their dispersal and independent breeding what allows them to help their parents raising their siblings in the subsequent breeding season. Such behavior is believed to be due, per example, to the lack of mates or breeding territories (ecological constraints hypothesis), a consequence of habitat fragmentation and/or disturbance. From this point, CB is easily promoted by a higher reproductive success of group vs pairs or single individuals. Accordingly, during this thesis I explore the early post-fledging survival of a cooperative breeding passerine, namely the impact of individual/habitat quality in its survival probability during the dependence period of the chicks. Our study species is the Cabanis’s greenbul (Phyllastrephus cabanisi), a medium-sized, brownish passerine, classified within the Pycnonotidae family. It is found over part of Central Africa in countries such as Angola, Democratic Republic of the Congo, Mozambique and Kenya, inhabiting primary and secondary forests, as well as woodland of various types up to 2700m of altitude. Previous studies have concluded that PC is a facultative cooperative breeder. This study was conducted in Taita Hills (TH) at the Eastern Arc Mountains (EAM), a chain of mountains running from Southeast Kenya to the South of Tanzania. TH comprises an area of 430 ha and has been suffering intense deforestation reflecting 98% forest reduction over the last 200 years. Nowadays its forest is divided in fragments and our study was based in 5of those fragments. We access the post-fledging survival through radio-telemetry. The juvenile survey was done through the breeding females in which transmitters were placed with a leg-loop technique. Ptilochronology is consider to be the study of feather growth bars and has been used to study the nutritional state of a bird. This technique considers that the feather growth rate is positively proportional to the individual capability of ingesting food and to the food availability. This technique is therefore used to infer for individual/habitat quality. Survival was lowest during the first 5 days post-fledging representing 53.3%. During the next 15 days, risk of predation decreased with only 14.3% more deceased individuals. This represents a total of only 33% survived individuals in the end of the 50 days. Our results showed yet a significant positive relationship between flock size and post-fledging survival as well as between ptilochronology values and post-fledgling survival. In practice, these imply that on this population, as bigger the flock, as greater the post fledging survival and that good habitat quality or good BF quality, will lead to a higher juvenile survival rate. We believe that CB is therefore an adaptive behaviour to the lack of mates/breeding territory originated from the mass forest destruction and disturbance. Such results confirms the critical importance of habitat quality in the post-fledging survival and, for the first time, demonstrates how flock size influences the living probability of the juveniles and therefore how it impacts the (local) population dynamics of this species. In my opinion, future research should be focus in disentangle individual and habitat quality from each other and verify which relationship exist between them. Such study will allow us to understand which factor has a stronger influence in the post-fledging survival and therefore redirect our studies in that direction. In order to confirm the negative impact of human disturbance and forest fragmentation, it would be of major relevance to compare the reproductive strategies and reproductive success of populations living in intact forests and disturbed patches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several models have been studied on predictive epidemics of arthropod vectored plant viruses in an attempt to bring understanding to the complex but specific relationship between the three cornered pathosystem (virus, vector and host plant), as well as their interactions with the environment. A large body of studies mainly focuses on weather based models as management tool for monitoring pests and diseases, with very few incorporating the contribution of vector's life processes in the disease dynamics, which is an essential aspect when mitigating virus incidences in a crop stand. In this study, we hypothesized that the multiplication and spread of tomato spotted wilt virus (TSWV) in a crop stand is strongly related to its influences on Frankliniella occidentalis preferential behavior and life expectancy. Model dynamics of important aspects in disease development within TSWV-F. occidentalis-host plant interactions were developed, focusing on F. occidentalis' life processes as influenced by TSWV. The results show that the influence of TSWV on F. occidentalis preferential behaviour leads to an estimated increase in relative acquisition rate of the virus, and up to 33% increase in transmission rate to healthy plants. Also, increased life expectancy; which relates to improved fitness, is dependent on the virus induced preferential behaviour, consequently promoting multiplication and spread of the virus in a crop stand. The development of vector-based models could further help in elucidating the role of tri-trophic interactions in agricultural disease systems. Use of the model to examine the components of the disease process could also boost our understanding on how specific epidemiological characteristics interact to cause diseases in crops. With this level of understanding we can efficiently develop more precise control strategies for the virus and the vector.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Heliothinae complex in Argentina encompasses Helicoverpa gelotopoeon (Dyar), Helicoverpa zea (Boddie), Helicoverpa armigera (Hu ̈ bner), and Chloridea virescens (Fabricius). In Tucum an, the native species H. gelotopoeon is one of the most voracious soybean pests and also affects cotton and chickpea, even more in soybean-chickpea succession cropping systems. Differentiation of the Heliothinae complex in the egg, larva, and pupa stages is difficult. Therefore, the observation of the adult wing pattern design and male genitalia is useful to differentiate species. The objective of this study was to identify the species of the Heliothinae complex, determine population fluctuations of the Heliothinae complex in soybean and chickpea crops using male moths collected in pheromone traps in Tucuman province, and update the geographical distribution of H. armigera in Argentina. The species found were H. gelotopoeon, H. armigera, H. zea , and C. virescens. Regardless of province, county, crop, and year, the predominant species was H. gelotopoeon . Considering the population dynamics of H. gelotopoeon and H. armigera in chickpea and soybean crops, H. gelotopoeon was the most abundant species in both crops, in all years sampled, and the differences registered were significant. On the other hand, according to the Sistema Nacional Argentino de Vigilancia y Monitoreo de Plagas (SINAVIMO) database and our collections, H. armigera was recorded in eight provinces and 20 counties of Argentina, and its larvae were found on soybean, chickpea, sunflower crops and spiny plumeless thistle (Carduus acanthoides). This is the first report of H. armigera in sunflower and spiny plumeless thistle in Argentina.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of size-grading of juveniles prior to stocking, as well as selective harvesting, on the population structure of pond-raised Macrobrachium amazonicum was studied. A randomized-complete-blocks design with 4 treatments and 3 replicates was used. The treatments were: upper size-graded juveniles, lower size-graded juveniles, ungraded juveniles (traditional), and ungraded juveniles with selective harvesting. Twelve 0.01 ha earthen ponds were stocked at 40 juveniles m(-2), according to the relevant treatment. Every three weeks, random samples from each pond were obtained for biometry, and after 3.5 months, the ponds were drained and completely harvested. Animals were then counted, weighed, and sexed; males were sorted as Translucent Claw (TC), Cinnamon Claw (CC), Green Claw 1 (GC1), and Green Claw 2 (GC2), and females as Virgin (VF), Berried (BE), and Open (OF). The prawns developed rapidly in the ponds. attaining maturity and differentiating into male morphotypes after about 2 months in all treatments. The fast-growing juveniles (upper grading fraction) mostly did not constitute the dominant males (CC] and GC2) in the adult population. Population development was slower in ponds stocked with Lower prawns, whereas selective harvesting increased the frequency of GC1 and reduced the final mean weight of GC2 males. The proportion of males increased throughout the culture period, but was generally not affected by the stocking or harvesting strategies. Grading juveniles and selective harvesting slightly altered the population dynamics and structure, although the general population development showed similar patterns in ponds stocked with upper, lower, and ungraded juveniles, or selectively harvested. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of my study was to collect data on managed cat (Felis catus) colonies located in two Miami-Dade County, Florida, parks, in order to test the following assertions put forward by proponents of the colonies: 1) Managed cat colonies will decline in size over time and 2) The territorial behavior of cats living in established cat colonies will prevent additional cats from joining. I collected observational and photographic capture-recapture data in order to track colony population dynamics. Behavioral data were also collected in order to understand the role that cat behavior plays in influencing colony population dynamics. My results do not support the assertion that colonies will decline over time. Instead, my findings demonstrate that the establishment of colonies on public lands encourages dumping of cats and creates an attractive nuisance. Furthermore, my behavioral analysis suggests that territorial behavior does not play a role in excluding new cats.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Outbreaks of fibropapillomatosis (FP), a neoplastic infectious disease of marine turtles, have occurred worldwide since the 1980s. Its most likely aetiological agent is a virus, but disease expression depends on external factors, typically associated with altered environments. The scarcity of robust long-term data on disease prevalence has limited interpretations on the impacts of FP on turtle populations. Here we model the dynamics of FP at 2 green turtle foraging aggregations in Puerto Rico, through 18 yr of capture-mark-recapture data (1997−2014). We observed spatiotemporal variation in FP prevalence, potentially modulated via individual site-fidelity. FP ex pression was residency dependent, and FP-free individuals developed tumours after 1.8 ± 0.8 yr (mean ± SD) in the infected area. Recovery from the disease was likely, with complete tumour regression occurring in 2.7 ± 0.7 yr (mean ± SD). FP does not currently seem to be a major threat to marine turtle populations; however, disease prevalence is yet unknown in many areas. Systematic monitoring is highly advisable as human-induced stressors can lead to deviations in host− pathogen relationships and disease virulence. Finally, data collection should be standardized for a global assessment of FP dynamics and impacts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With progressive climate change, the preservation of biodiversity is becoming increasingly important. Only if the gene pool is large enough and requirements of species are diverse, there will be species that can adapt to the changing circumstances. To maintain biodiversity, we must understand the consequences of the various strategies. Mathematical models of population dynamics could provide prognoses. However, a model that would reproduce and explain the mechanisms behind the diversity of species that we observe experimentally and in nature is still needed. A combination of theoretical models with detailed experiments is needed to test biological processes in models and compare predictions with outcomes in reality. In this thesis, several food webs are modeled and analyzed. Among others, models are formulated of laboratory experiments performed in the Zoological Institute of the University of Cologne. Numerical data of the simulations is in good agreement with the real experimental results. Via numerical simulations it can be demonstrated that few assumptions are necessary to reproduce in a model the sustained oscillations of the population size that experiments show. However, analysis indicates that species "thrown together by chance" are not very likely to survive together over long periods. Even larger food nets do not show significantly different outcomes and prove how extraordinary and complicated natural diversity is. In order to produce such a coexistence of randomly selected species—as the experiment does—models require additional information about biological processes or restrictions on the assumptions. Another explanation for the observed coexistence is a slow extinction that takes longer than the observation time. Simulated species survive a comparable period of time before they die out eventually. Interestingly, it can be stated that the same models allow the survival of several species in equilibrium and thus do not follow the so-called competitive exclusion principle. This state of equilibrium is more fragile, however, to changes in nutrient supply than the oscillating coexistence. Overall, the studies show, that having a diverse system means that population numbers are probably oscillating, and on the other hand oscillating population numbers stabilize a food web both against demographic noise as well as against changes of the habitat. Model predictions can certainly not be converted at their face value into policies for real ecosystems. But the stabilizing character of fluctuations should be considered in the regulations of animal populations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pinna nobilis is the biggest Mediterranean bivalve, endemic and semi-infaunal. Provide hard substrates to colonize, increasing the spatial heterogeneity of the softbottom communities. P. nobilis suffer a drastic decline due to the anthropogenic pressures. It’s included in the Habitats Directive, in the Barcelona Convention, and in the red lists of many Mediterranean countries. Estimates the growth rate allows to understand the population dynamics of species and yield knowledge to improve protection efforts. In this study a new methodology based on sclerochronology was used to estimate the age and the growth rate of a P. nobilis population located in Les Alfaques bay. The shells of 35 specimens were cataloged. A subsample of 20 individuals was selected, and one valve of each specimens was cut into radial sections along PAMS (Posterior Adductor Muscle Scar) to study the inner register. Thus, the positions of PAMS obscured by nacre were identified, and the number of missing records was estimated by the width of the calcitic layer in the anterior part of the shell. The first growth curve for the Les Alfaques bay population was calculated from the length/age data. To simulate the growth rate of this population, the growth model based on the modified Von Bertalanffy equation was used. Shallow water usually hosts small sized populations of P. nobilis, while in deeper waters specimens reaches larger size. In Les Alfaques bay the population is composed by large size individuals though it’s located in shallows waters. This unusual size pattern is probably due to a sand bar that offers protection from hydrodynamic stress, allowing individuals to elongate more. This study contributes to the knowledge on P. nobilis biology and, with the aim to monitor this species, the growth curve could be used as baseline for future studies on habitat characteristics that may affect the population structure and dynamics in Les Alfaques Bay.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The evolution and population dynamics of avian coronaviruses (AvCoVs) remain underexplored. In the present study, in-depth phylogenetic and Bayesian phylogeographic studies were conducted to investigate the evolutionary dynamics of AvCoVs detected in wild and synanthropic birds. A total of 500 samples, including tracheal and cloacal swabs collected from 312 wild birds belonging to 42 species, were analysed using molecular assays. A total of 65 samples (13%) from 22 bird species were positive for AvCoV. Molecular evolution analyses revealed that the sequences from samples collected in Brazil did not cluster with any of the AvCoV S1 gene sequences deposited in the GenBank database. Bayesian framework analysis estimated an AvCoV strain from Sweden (1999) as the most recent common ancestor of the AvCoVs detected in this study. Furthermore, the analysis inferred an increase in the AvCoV dynamic demographic population in different wild and synanthropic bird species, suggesting that birds may be potential new hosts responsible for spreading this virus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Size distributions in woody plant populations have been used to assess their regeneration status, assuming that size structures with reverse-J shapes represent stable populations. We present an empirical approach of this issue using five woody species from the Cerrado. Considering count data for all plants of these five species over a 12-year period, we analyzed size distribution by: a) plotting frequency distributions and their adjustment to the negative exponential curve and b) calculating the Gini coefficient. To look for a relationship between size structure and future trends, we considered the size structures from the first census year. We analyzed changes in number over time and performed a simple population viability analysis, which gives the mean population growth rate, its variance and the probability of extinction in a given time period. Frequency distributions and the Gini coefficient were not able to predict future trends in population numbers. We recommend that managers should not use measures of size structure as a basis for management decisions without applying more appropriate demographic studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the flow of diaspores is fundamental for determining plant population dynamics in a particular habitat, and a lack of seeds is a limiting factor in forest regeneration, especially in isolated forest fragments. Bamboo dominance affects forest structure and dynamics by suppressing or delaying the recruitment of and colonization by tree species as well as by inhibiting the survival and growth of adult trees. The goal of the present study was to determine whether dominance of the bamboo species Aulonemia aristulata (Döll) McClure in the forest understory influences species abundance and composition. We examined the seed rain at two noncontiguous sites (1.5 km apart) within an urban forest fragment, with and without bamboo dominance (BD+ and BD- areas, respectively). Sixty seed traps (0.5 m², with a 1-mm mesh) were set in the BD+ and BD- areas, and the seed rain was sampled from January to December 2007. Diaspores were classified according to dispersal syndrome, growth form and functional type of the species to which they belonged. There were significant differences between the two areas in terms of seed density, species diversity and dispersal syndrome. The BD+ area showed greater seed density and species diversity. In both areas, seed distribution was limited primarily by impaired dispersal. Bamboo dominance and low tree density resulted in fewer propagules in the seed rain. Our results suggest that low availability of seeds in the rain does not promote the maintenance of a degraded state, characterized by the presence of bamboo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comunidade fitoplanctônica pode funcionar como sensor das variações do ambiente aquático respondendo rapidamente as essas alterações. Em sistemas aquáticos continentais é comum a coexistência de espécies que possuem as mesmas necessidades ecológicas e apresentam as mesmas tolerâncias ambientais, tais grupos de espécies fitoplanctônicas são denominados grupos funcionais. O uso de grupos funcionais fitoplanctônicos para avaliar tais alterações tem se mostrado muito útil e eficaz. Assim, o objetivo do estudo foi avaliar a ocorrência de grupos funcionais fitoplanctônicos em dois reservatórios (Billings e Guarapiranga) que suprem de água milhões de pessoas na Região Metropolitana de São Paulo, Sudeste do Brasil. As amostras foram coletadas mensalmente na superfície da coluna d'água e foram analisadas as variáveis físicas, químicas e biológicas (análises qualitativa e quantitativa do fitoplâncton). Os maiores valores de biovolume (mm3.L-1) das espécies descritoras e grupos funcionais foram representados por Anabaena circinalis (H1), Microcystis aeruginosa (LM/M) e Mougeotia sp. (T) no Reservatório Guarapiranga e por Cylindrospermopsis raciborskii (SN), Microcystis aeruginosa e M. panniformis (LM/M), Planktothrix agardhii e P. cf. clathrata (S1) no Reservatório Billings. Os principais fatores ambientais que interferiram na dinâmica do fitoplâncton foram: temperatura da água, zona eufótica, turbidez, condutividade, pH, oxigênio dissolvido, nitrato e fósforo total

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this study was to collect, identify and study population fluctuation of Coleoptera species in a forest of Eucalyptus spp., on a farm in the municipality of Pinheiro Machado, Rio Grande do Sul State. Insects were collected with light traps and ethanol traps, once every fifteen days, in the period of February 2006 to October 2007. The insects, after selection procedures, were identified based on entomological collections and specialized literature. A total of 6172 individuals were collected and distributed among 40 families and 249 species, of which 130 were identified at the species level and 119 at the family level, representing 4498 and 1674 of total individuals collected, respectively. Cyclocephala sp. 1, Cyclocephala sp. 2, Dyscinetus sp. 1, Euetheola humilis (Scarabaeidae) and Neoclytus curvatus (Cerambycidae) were the most abundant species, representing 49.28% of the individuals identified in genus and/or species. Scarabaeidae presented the highest number of individuals (2588), distributed in 37 species. The families Cerambycidae (47) and Scolytidae (40) presented the largest number of species. Individuals of Coleoptera were trapped at all collections but the largest number of individuals was trapped in December 2006 and March 2007.