758 resultados para increasing residential rents
Resumo:
Residential electricity demand in most European countries accounts for a major proportion of overall electricity consumption. The timing of residential electricity demand has significant impacts on carbon emissions and system costs. This paper reviews the data and methods used in time use studies in the context of residential electricity demand modelling. It highlights key issues which are likely to become more topical for research on the timing of electricity demand following the roll-out of smart metres.
Resumo:
Nowadays the electricity consumption in the residential sector attracts policy and research efforts, in order to propose saving strategies and to attain a better balance between production and consumption, by integrating renewable energy production and proposing suitable demand side management methods. To achieve these objectives it is essential to have real information about household electricity demand profiles in dwellings, highly correlated, among other aspects, with the active occupancy of the homes and to the personal activities carried out in homes by their occupants. Due to the limited information related to these aspects, in this paper, behavioral factors of the Spanish household residents, related to the electricity consumption, have been determined and analyzed, based on data from the Spanish Time Use Surveys, differentiating among the Autonomous Communities and the size of municipalities, or the type of days, weekdays or weekends. Activities involving a larger number of houses are those related to Personal Care, Food Preparation and Washing Dishes. The activity of greater realization at homes is Watching TV, which together with Using PC, results in a high energy demand in an aggregate level. Results obtained enable identify prospective targets for load control and for efficiency energy reduction recommendations to residential consumers.
Resumo:
Understanding the performance of banks is of the utmost importance due to the impact the sector may have on economic growth and financial stability. Residential mortgage loans constitute a large proportion of the portfolio of many banks and are one of the key assets in the determination of their performance. Using a dynamic panel model, we analyse the impact of residential mortgage loans on bank profitability and risk, based on a sample of 555 banks in the European Union (EU-15), over the period from 1995 to 2008. We find that an increase in residential mortgage loans seems to improve bank’s performance in terms of both profitability and credit risk in good market, pre-financial crisis, conditions. These findings may aid in explaining why banks rush to lend to property during booms because of the positive effect it has on performance. The results also show that credit risk and profitability are lower during the upturn in the residential property cycle.
Resumo:
Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.
Resumo:
The inclusion of the direct and indirect radiative effects of aerosols in high-resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three-dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing long-wave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propagate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high-latitude clean-air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short-range forecasts. However, the indirect aerosol effect leads to a strengthening of the low-level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the importance of including a more realistic treatment of aerosol–cloud interactions in global NWP models and the potential for improved global environmental prediction systems through the incorporation of more complex aerosol schemes.
Resumo:
When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. 1). There is a need to narrow uncertainty2 in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow—especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.
Resumo:
Dynamic electricity pricing can produce efficiency gains in the electricity sector and help achieve energy policy goals such as increasing electric system reliability and supporting renewable energy deployment. Retail electric companies can offer dynamic pricing to residential electricity customers via smart meter-enabled tariffs that proxy the cost to procure electricity on the wholesale market. Current investments in the smart metering necessary to implement dynamic tariffs show policy makers’ resolve for enabling responsive demand and realizing its benefits. However, despite these benefits and the potential bill savings these tariffs can offer, adoption among residential customers remains at low levels. Using a choice experiment approach, this paper seeks to determine whether disclosing the environmental and system benefits of dynamic tariffs to residential customers can increase adoption. Although sampling and design issues preclude wide generalization, we found that our environmentally conscious respondents reduced their required discount to switch to dynamic tariffs around 10% in response to higher awareness of environmental and system benefits. The perception that shifting usage is easy to do also had a significant impact, indicating the potential importance of enabling technology. Perhaps the targeted communication strategy employed by this study is one way to increase adoption and achieve policy goals.
Resumo:
We systematically compare the performance of ETKF-4DVAR, 4DVAR-BEN and 4DENVAR with respect to two traditional methods (4DVAR and ETKF) and an ensemble transform Kalman smoother (ETKS) on the Lorenz 1963 model. We specifically investigated this performance with increasing nonlinearity and using a quasi-static variational assimilation algorithm as a comparison. Using the analysis root mean square error (RMSE) as a metric, these methods have been compared considering (1) assimilation window length and observation interval size and (2) ensemble size to investigate the influence of hybrid background error covariance matrices and nonlinearity on the performance of the methods. For short assimilation windows with close to linear dynamics, it has been shown that all hybrid methods show an improvement in RMSE compared to the traditional methods. For long assimilation window lengths in which nonlinear dynamics are substantial, the variational framework can have diffculties fnding the global minimum of the cost function, so we explore a quasi-static variational assimilation (QSVA) framework. Of the hybrid methods, it is seen that under certain parameters, hybrid methods which do not use a climatological background error covariance do not need QSVA to perform accurately. Generally, results show that the ETKS and hybrid methods that do not use a climatological background error covariance matrix with QSVA outperform all other methods due to the full flow dependency of the background error covariance matrix which also allows for the most nonlinearity.
Resumo:
Peak residential electricity demand takes place when people conduct simultaneous activities at specific times of the day. Social practices generate patterns of demand and can help understand why, where, with whom and when energy services are used at peak time. The aim of this work is to make use of recent UK time use and locational data to better understand: (i) how a set of component indices on synchronisation, variation, sharing and mobility indicate flexibility to shift demand; and (ii) the links between people’s activities and peaks in greenhouse gases’ intensities. The analysis is based on a recent UK time use dataset, providing 1 minute interval data from GPS devices and 10 minute data from diaries and questionnaires for 175 data days comprising 153 respondents. Findings show how greenhouse gases’ intensities and flexibility to shift activities vary throughout the day. Morning peaks are characterised by high levels of synchronisation, shared activities and occupancy, with low variation of activities. Evening peaks feature low synchronisation, and high spatial mobility variation of activities. From a network operator perspective, the results indicate that periods with lower flexibility may be prone to more significant local network loads due to the synchronization of electricity-demanding activities.
Resumo:
In the Coupled Model Intercomparison Project Phase 5 (CMIP5), the model-mean increase in global mean surface air temperature T under the 1pctCO2 scenario (atmospheric CO2 increasing at 1% yr−1) during the second doubling of CO2 is 40% larger than the transient climate response (TCR), i.e. the increase in T during the first doubling. We identify four possible contributory effects. First, the surface climate system loses heat less readily into the ocean beneath as the latter warms. The model spread in the thermal coupling between the upper and deep ocean largely explains the model spread in ocean heat uptake efficiency. Second, CO2 radiative forcing may rise more rapidly than logarithmically with CO2 concentration. Third, the climate feedback parameter may decline as the CO2 concentration rises. With CMIP5 data, we cannot distinguish the second and third possibilities. Fourth, the climate feedback parameter declines as time passes or T rises; in 1pctCO2, this effect is less important than the others. We find that T projected for the end of the twenty-first century correlates more highly with T at the time of quadrupled CO2 in 1pctCO2 than with the TCR, and we suggest that the TCR may be underestimated from observed climate change.
Resumo:
Any occupation of northern Europe by Lower Palaeolithic hominins, even those occurring during full interglacials, must have addressed the challenges of marked seasonality and cold winters. These would have included the problems of: wind-chill and frostbite; duration, distribution and depth of snow-cover; reduced daylight hours; and distribution and availability of animal and plant foods. Solutions can essentially be characterised as a ‘stick or twist’ choice: i.e. year-round presence on a local scale vs. extensive annual mobility. However these options, and the ‘interim’ strategies that lie between them, present various problems, including maintaining core body temperature, meeting the energetic demands of mobility, coping with reduced resource availability and increasing patchiness, and meeting nutritional requirements. The feasibility of different winter survival strategies are explored with reference to Lower Palaeolithic palaeoenvironmental reconstructions and on-site behavioural evidence. Emphasis is placed upon possible strategies for (i) avoiding the excessive lean meat protein problem of ‘rabbit starvation’ (e.g. through exploitation of ‘residential’ species with significant winter body fat and/or by targeting specific body parts, following modern ethnographic examples, supplemented by the exploitation of winter plants); and (ii) maintaining body temperatures (e.g. through managed pyrotechnology, and/or other forms of cultural insulation). The paper concludes with a suggested winter strategy.
Resumo:
One of the most significant sources of greenhouse gas (GHG) emissions in Canada is the buildings sector, with over 30% of national energy end-use occurring in buildings. Energy use must be addressed to reduce emissions from the buildings sector, as nearly 70% of all Canada’s energy used in the residential sector comes from fossil sources. An analysis of GHG emissions from the existing residential building stock for the year 2010 has been conducted for six Canadian cities with different climates and development histories: Vancouver, Edmonton, Winnipeg, Toronto, Montreal, and Halifax. Variation across these cities is seen in their 2010 GHG emissions, due to climate, characteristics of the building stock, and energy conversion technologies, with Halifax having the highest per capita emissions at 5.55 tCO2e/capita and Montreal having the lowest at 0.32 tCO2e/capita. The importance of the provincial electricity grid’s carbon intensity is emphasized, along with era of construction, occupancy, floor area, and climate. Approaches to achieving deep emissions reductions include innovative retrofit financing and city level residential energy conservation by-laws; each region should seek location-appropriate measures to reduce energy demand within its residential housing stock, as well as associated GHG emissions.
Resumo:
The use of Information and Communication Technology (ICT) by adults with learning disabilities has been positively promoted over the past decade. More recently, policy statements and guidance from the UK government have underlined the importance of ICT for adults with learning disabilities specifically, as well as for the population in general, through the potential it offers for social inclusion. The aim of the present study was to provide a picture of how ICT is currently being used within one organisation providing specialist services for adults with learning disabilities and more specifically to provide a picture of its use in promoting community participation. Nine day and 14 residential services were visited as part of a qualitative study to answer three main questions: What kinds of computer programs are being used? What are they being used for? Does this differ between day and residential services? Computers and digital cameras were used for a wide range of activities and ‘mainstream’ programs were used more widely than those developed for specific user groups. In day services, ICT was often embedded in wider projects and activities, whilst use in houses was based around leisure interests. In both contexts, ICT was being used to facilitate communication, although this was more linked to within-service activities, rather than those external to service provision.
Resumo:
Clustering methods are increasingly being applied to residential smart meter data, providing a number of important opportunities for distribution network operators (DNOs) to manage and plan the low voltage networks. Clustering has a number of potential advantages for DNOs including, identifying suitable candidates for demand response and improving energy profile modelling. However, due to the high stochasticity and irregularity of household level demand, detailed analytics are required to define appropriate attributes to cluster. In this paper we present in-depth analysis of customer smart meter data to better understand peak demand and major sources of variability in their behaviour. We find four key time periods in which the data should be analysed and use this to form relevant attributes for our clustering. We present a finite mixture model based clustering where we discover 10 distinct behaviour groups describing customers based on their demand and their variability. Finally, using an existing bootstrapping technique we show that the clustering is reliable. To the authors knowledge this is the first time in the power systems literature that the sample robustness of the clustering has been tested.