967 resultados para inactivation of samples


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of the microsomal P450 cytochromes, the ethanol-inducible isoform, P450 2E1, is believed to be predominant in leading to oxidative damage, including the generation of radical species that contribute to lipid peroxidation, and in the reductive beta-scission of lipid hydroperoxides to give hydrocarbons and aldehydes. In the present study, the sensitivity of a series of P450s to trans-4-hydroxy-2-nonenal (HNE), a known toxic product of membrane lipid peroxidation, was determined. After incubation of a purified cytochrome with HNE, the other components of the reconstituted system (NADPH-cytochrome P450 reductase, phosphatidylcholine, and NADPH) were added, and the rate of oxygenation of 1-phenylethanol to yield acetophenone was assayed. Inactivation occurs in a time-dependent and HNE concentration-dependent manner, with P450s 2E1 and 1A1 being the most sensitive, followed by isoforms 1A2, 3A6, and 2B4. At an HNE concentration of 0.24 microM, which was close to the micromolar concentration of the enzyme, four of the isoforms were significantly inhibited, but not P450 2B4. In other experiments, the reductase was shown to be only relatively weakly inactivated by HNE. P450s 2E1 and 2B4 in microsomal membranes from animals induced with acetone or phenobarbital, respectively, are as readily inhibited as the purified forms. Evidence was obtained that the P450 heme is apparently not altered and the sulfur ligand is not displaced, that substrate protects against HNE, and that the inactivation is reversed upon dialysis. Higher levels of reductase or substrate do not restore the activity of inhibited P450 in the catalytic assay. Our results suggest that the observed inhibition of the various P450s is of sufficient magnitude to cause significant changes in the metabolism of foreign compounds such as drugs and chemical carcinogens by the P450 oxygenase system at HNE concentrations that occur in biological membranes. In view of the known activities of P450 2E1 in generating lipid hydroperoxides and in their beta-scission, its inhibition by this product of membrane peroxidation may provide a negative regulatory function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Woodlark Basin, an area of continental extension, is an ideal location to study the evolution of permeability and the development of overpressures within an active rift basin. In this investigation, we measured sediment permeabilities of cores from Woodlark Basin and used numerical modeling to determine if pore fluid overpressures are likely at the base of the rift basin. Constant-rate flow tests were conducted on cores from Site 1108, located in the rift basin, and Sites 1115 and 1118, located on the northern margin of the basin. Results of the laboratory tests indicated permeabilities that range from 1.5 x 10**-18 to 1 x 10**-16 m**2. Results of the numerical modeling of Site 1108 suggest that overpressures due to sedimentation are unlikely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 14C reservoir age of the surface ocean was determined for two Holocene periods (4908-4955 and 3008-3066 calendar (cal) B.P.) using U/Th-dated corals from Biscayne National Park, Florida, United States. We found that the average reservoir ages for these two time periods (294 ± 33 and 291 ± 27 years, respectively) were lower than the average value between A.D. 1600 and 1900 (390 ± 60 years) from corals. It appears that the surface ocean was closer to isotopic equilibrium with CO2 in the atmosphere during these two time periods than it was during recent times. Seasonal d18O measurements from the younger coral are similar to modern values, suggesting that mixing with open ocean waters was indeed occurring during this coral's lifetime. Likely explanations for the lower reservoir age include increased stratification of the surface ocean or increased D14C values of subsurface waters that mix into the surface. Our results imply that a more correct reservoir age correction for radiocarbon measurements of marine samples in this location from the time periods ~3040 and ~4930 cal years B.P. is ~292 ± 30 years, less than the canonical value of 404 ± 20 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The German-Russian project CARBOPERM - Carbon in Permafrost, origin, quality, quantity, and degradation and microbial turnover - is devoted to studying soil organic matter history, degradation and turnover in coastal lowlands of Northern Siberia. The multidisciplinary project combines research from various German and Russian institutions and runs from 2013 to 2016. The project aims assessing the recent and the ancient trace gas budget over tundra soils in northern Siberia. Studied field sites are placed in the permafrost of the Lena Delta and on Bol'shoy Lyakhovsky, the southernmost island of the New Siberian Archipelago in the eastern Laptev Sea. Field campaigns to Bol'shoy Lyakhovsky in 2014 (chapter 2) were motivated by research on palaeoenvironmental and palaeoclimate reconstruction, sediment dating, near surface geophysics and microbiological research. In particular the field campaigns focussed on: - coring Quaternary strata with a ages back to ~200.000 years ago as found along the southern coast; they allow tracing microbial communities and organic tracers (i.e. lipids and biomarkers, sedimentary DNA) in the deposits across two climatic cycles (chapter 3), - instrumenting a borehole with a thermistor chain for measuring permafrost temperatures (chapter 3), - sampling Quaternary strata for dating permafrost formation periods based on the optical stimulated luminescence (OSL) technique (chapter 4), - sampling soil and geologic formations for carbon content in order to highlight potential release of CO2 and methane based on incubation experiments (chapter 5), - profiling near surface permafrost using ground-penetrating radar and geoelectrics for defining the spatial depositional context, where the cores are located (chapters 6 + 7).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terrestrial permafrost archives along the Yukon Coastal Plain (northwest Canada) have recorded landscape development and environmental change since the Late Wisconsinan at the interface of unglaciated Beringia (i.e. Komakuk Beach) and the northwestern limit of the Laurentide Ice Sheet (i.e. Herschel Island). The objective of this paper is to compare the late glacial and Holocene landscape development on both sides of the former ice margin based on permafrost sequences and ground ice. Analyses at these sites involved a multi-proxy approach including: sedimentology, cryostratigraphy, palaeoecology of ostracods, stable water isotopes in ground ice, hydrochemistry, and AMS radiocarbon and infrared stimulated luminescence (IRSL) dating. AMS and IRSL age determinations yielded full glacial ages at Komakuk Beach that is the northeastern limit of ice-free Beringia. Herschel Island to the east marks the Late Wisconsinan limit of the northwest Laurentide Ice Sheet and is composed of ice-thrust sediments containing plant detritus as young as 16.2 cal ka BP that might provide a maximum age on ice arrival. Late Wisconsinan ice wedges with sediment-rich fillings on Herschel Island are depleted in heavy oxygen isotopes (mean d18O of -29.1 per mil); this, together with low d-excess values, indicates colder-than-modern winter temperatures and probably reduced snow depths. Grain-size distribution and fossil ostracod assemblages indicate that deglaciation of the Herschel Island ice-thrust moraine was accompanied by alluvial, proluvial, and eolian sedimentation on the adjacent unglaciated Yukon Coastal Plain until ~11 cal ka BP during a period of low glacio-eustatic sea level. The late glacial-Holocene transition was marked by higher-than-modern summer temperatures leading to permafrost degradation that began no later than 11.2 cal ka BP and caused a regional thaw unconformity. Cryostructures and ice wedges were truncated while organic matter was incorporated and soluble ions were leached in the thaw zone. Thermokarst activity led to the formation of ice-wedge casts and deposition of thermokarst lake sediments. These were subsequently covered by rapidly accumulating peat during the early Holocene Thermal Maximum. A rising permafrost table, reduced peat accumulation, and extensive ice-wedge growth resulted from climate cooling starting in the middle Holocene until the late 20th century. The reconstruction of palaeolandscape dynamics on the Yukon Coastal Plain and the eastern Beringian edge contributes to unraveling the linkages between ice sheet, ocean, and permafrost that have existed since the Late Wisconsinan.